ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fniniseg Unicode version

Theorem fniniseg 5755
Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fniniseg  |-  ( F  Fn  A  ->  ( C  e.  ( `' F " { B }
)  <->  ( C  e.  A  /\  ( F `
 C )  =  B ) ) )

Proof of Theorem fniniseg
StepHypRef Expression
1 elpreima 5754 . 2  |-  ( F  Fn  A  ->  ( C  e.  ( `' F " { B }
)  <->  ( C  e.  A  /\  ( F `
 C )  e. 
{ B } ) ) )
2 funfvex 5644 . . . . 5  |-  ( ( Fun  F  /\  C  e.  dom  F )  -> 
( F `  C
)  e.  _V )
3 elsng 3681 . . . . 5  |-  ( ( F `  C )  e.  _V  ->  (
( F `  C
)  e.  { B } 
<->  ( F `  C
)  =  B ) )
42, 3syl 14 . . . 4  |-  ( ( Fun  F  /\  C  e.  dom  F )  -> 
( ( F `  C )  e.  { B }  <->  ( F `  C )  =  B ) )
54funfni 5423 . . 3  |-  ( ( F  Fn  A  /\  C  e.  A )  ->  ( ( F `  C )  e.  { B }  <->  ( F `  C )  =  B ) )
65pm5.32da 452 . 2  |-  ( F  Fn  A  ->  (
( C  e.  A  /\  ( F `  C
)  e.  { B } )  <->  ( C  e.  A  /\  ( F `  C )  =  B ) ) )
71, 6bitrd 188 1  |-  ( F  Fn  A  ->  ( C  e.  ( `' F " { B }
)  <->  ( C  e.  A  /\  ( F `
 C )  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   `'ccnv 4718   dom cdm 4719   "cima 4722   Fun wfun 5312    Fn wfn 5313   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by:  pw2f1odclem  6995  ghmeqker  13808  pilem1  15453  taupi  16441
  Copyright terms: Public domain W3C validator