ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fniniseg GIF version

Theorem fniniseg 5713
Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fniniseg (𝐹 Fn 𝐴 → (𝐶 ∈ (𝐹 “ {𝐵}) ↔ (𝐶𝐴 ∧ (𝐹𝐶) = 𝐵)))

Proof of Theorem fniniseg
StepHypRef Expression
1 elpreima 5712 . 2 (𝐹 Fn 𝐴 → (𝐶 ∈ (𝐹 “ {𝐵}) ↔ (𝐶𝐴 ∧ (𝐹𝐶) ∈ {𝐵})))
2 funfvex 5606 . . . . 5 ((Fun 𝐹𝐶 ∈ dom 𝐹) → (𝐹𝐶) ∈ V)
3 elsng 3653 . . . . 5 ((𝐹𝐶) ∈ V → ((𝐹𝐶) ∈ {𝐵} ↔ (𝐹𝐶) = 𝐵))
42, 3syl 14 . . . 4 ((Fun 𝐹𝐶 ∈ dom 𝐹) → ((𝐹𝐶) ∈ {𝐵} ↔ (𝐹𝐶) = 𝐵))
54funfni 5385 . . 3 ((𝐹 Fn 𝐴𝐶𝐴) → ((𝐹𝐶) ∈ {𝐵} ↔ (𝐹𝐶) = 𝐵))
65pm5.32da 452 . 2 (𝐹 Fn 𝐴 → ((𝐶𝐴 ∧ (𝐹𝐶) ∈ {𝐵}) ↔ (𝐶𝐴 ∧ (𝐹𝐶) = 𝐵)))
71, 6bitrd 188 1 (𝐹 Fn 𝐴 → (𝐶 ∈ (𝐹 “ {𝐵}) ↔ (𝐶𝐴 ∧ (𝐹𝐶) = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  {csn 3638  ccnv 4682  dom cdm 4683  cima 4686  Fun wfun 5274   Fn wfn 5275  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288
This theorem is referenced by:  pw2f1odclem  6946  ghmeqker  13682  pilem1  15326  taupi  16153
  Copyright terms: Public domain W3C validator