Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpreima | Unicode version |
Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
elpreima |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimass 4967 | . . . . 5 | |
2 | 1 | sseli 3138 | . . . 4 |
3 | fndm 5287 | . . . . 5 | |
4 | 3 | eleq2d 2236 | . . . 4 |
5 | 2, 4 | syl5ib 153 | . . 3 |
6 | fnfun 5285 | . . . . 5 | |
7 | fvimacnvi 5599 | . . . . 5 | |
8 | 6, 7 | sylan 281 | . . . 4 |
9 | 8 | ex 114 | . . 3 |
10 | 5, 9 | jcad 305 | . 2 |
11 | fvimacnv 5600 | . . . . 5 | |
12 | 11 | funfni 5288 | . . . 4 |
13 | 12 | biimpd 143 | . . 3 |
14 | 13 | expimpd 361 | . 2 |
15 | 10, 14 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2136 ccnv 4603 cdm 4604 cima 4607 wfun 5182 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: fniniseg 5605 fncnvima2 5606 rexsupp 5609 unpreima 5610 respreima 5613 fisumss 11333 fprodssdc 11531 tanvalap 11649 1arith 12297 cncnpi 12868 cncnp 12870 cnpdis 12882 tx1cn 12909 tx2cn 12910 txcnmpt 12913 txdis1cn 12918 xmeterval 13075 cnbl0 13174 cnblcld 13175 |
Copyright terms: Public domain | W3C validator |