| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpreima | Unicode version | ||
| Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| elpreima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass 5064 |
. . . . 5
| |
| 2 | 1 | sseli 3197 |
. . . 4
|
| 3 | fndm 5392 |
. . . . 5
| |
| 4 | 3 | eleq2d 2277 |
. . . 4
|
| 5 | 2, 4 | imbitrid 154 |
. . 3
|
| 6 | fnfun 5390 |
. . . . 5
| |
| 7 | fvimacnvi 5717 |
. . . . 5
| |
| 8 | 6, 7 | sylan 283 |
. . . 4
|
| 9 | 8 | ex 115 |
. . 3
|
| 10 | 5, 9 | jcad 307 |
. 2
|
| 11 | fvimacnv 5718 |
. . . . 5
| |
| 12 | 11 | funfni 5395 |
. . . 4
|
| 13 | 12 | biimpd 144 |
. . 3
|
| 14 | 13 | expimpd 363 |
. 2
|
| 15 | 10, 14 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: fniniseg 5723 fncnvima2 5724 rexsupp 5727 unpreima 5728 respreima 5731 fisumss 11818 fprodssdc 12016 tanvalap 12134 1arith 12805 ghmpreima 13717 ghmnsgpreima 13720 kerf1ghm 13725 psrbaglesuppg 14549 psrbagfi 14550 cncnpi 14815 cncnp 14817 cnpdis 14829 tx1cn 14856 tx2cn 14857 txcnmpt 14860 txdis1cn 14865 xmeterval 15022 cnbl0 15121 cnblcld 15122 |
| Copyright terms: Public domain | W3C validator |