Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpreima | Unicode version |
Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
elpreima |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimass 4946 | . . . . 5 | |
2 | 1 | sseli 3124 | . . . 4 |
3 | fndm 5266 | . . . . 5 | |
4 | 3 | eleq2d 2227 | . . . 4 |
5 | 2, 4 | syl5ib 153 | . . 3 |
6 | fnfun 5264 | . . . . 5 | |
7 | fvimacnvi 5578 | . . . . 5 | |
8 | 6, 7 | sylan 281 | . . . 4 |
9 | 8 | ex 114 | . . 3 |
10 | 5, 9 | jcad 305 | . 2 |
11 | fvimacnv 5579 | . . . . 5 | |
12 | 11 | funfni 5267 | . . . 4 |
13 | 12 | biimpd 143 | . . 3 |
14 | 13 | expimpd 361 | . 2 |
15 | 10, 14 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2128 ccnv 4582 cdm 4583 cima 4586 wfun 5161 wfn 5162 cfv 5167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-fv 5175 |
This theorem is referenced by: fniniseg 5584 fncnvima2 5585 rexsupp 5588 unpreima 5589 respreima 5592 fisumss 11271 fprodssdc 11469 tanvalap 11587 cncnpi 12588 cncnp 12590 cnpdis 12602 tx1cn 12629 tx2cn 12630 txcnmpt 12633 txdis1cn 12638 xmeterval 12795 cnbl0 12894 cnblcld 12895 |
Copyright terms: Public domain | W3C validator |