| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpreima | Unicode version | ||
| Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| elpreima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass 5033 |
. . . . 5
| |
| 2 | 1 | sseli 3180 |
. . . 4
|
| 3 | fndm 5358 |
. . . . 5
| |
| 4 | 3 | eleq2d 2266 |
. . . 4
|
| 5 | 2, 4 | imbitrid 154 |
. . 3
|
| 6 | fnfun 5356 |
. . . . 5
| |
| 7 | fvimacnvi 5679 |
. . . . 5
| |
| 8 | 6, 7 | sylan 283 |
. . . 4
|
| 9 | 8 | ex 115 |
. . 3
|
| 10 | 5, 9 | jcad 307 |
. 2
|
| 11 | fvimacnv 5680 |
. . . . 5
| |
| 12 | 11 | funfni 5361 |
. . . 4
|
| 13 | 12 | biimpd 144 |
. . 3
|
| 14 | 13 | expimpd 363 |
. 2
|
| 15 | 10, 14 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 |
| This theorem is referenced by: fniniseg 5685 fncnvima2 5686 rexsupp 5689 unpreima 5690 respreima 5693 fisumss 11574 fprodssdc 11772 tanvalap 11890 1arith 12561 ghmpreima 13472 ghmnsgpreima 13475 kerf1ghm 13480 psrbaglesuppg 14302 cncnpi 14548 cncnp 14550 cnpdis 14562 tx1cn 14589 tx2cn 14590 txcnmpt 14593 txdis1cn 14598 xmeterval 14755 cnbl0 14854 cnblcld 14855 |
| Copyright terms: Public domain | W3C validator |