ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpreima Unicode version

Theorem elpreima 5753
Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
elpreima  |-  ( F  Fn  A  ->  ( B  e.  ( `' F " C )  <->  ( B  e.  A  /\  ( F `  B )  e.  C ) ) )

Proof of Theorem elpreima
StepHypRef Expression
1 cnvimass 5090 . . . . 5  |-  ( `' F " C ) 
C_  dom  F
21sseli 3220 . . . 4  |-  ( B  e.  ( `' F " C )  ->  B  e.  dom  F )
3 fndm 5419 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
43eleq2d 2299 . . . 4  |-  ( F  Fn  A  ->  ( B  e.  dom  F  <->  B  e.  A ) )
52, 4imbitrid 154 . . 3  |-  ( F  Fn  A  ->  ( B  e.  ( `' F " C )  ->  B  e.  A )
)
6 fnfun 5417 . . . . 5  |-  ( F  Fn  A  ->  Fun  F )
7 fvimacnvi 5748 . . . . 5  |-  ( ( Fun  F  /\  B  e.  ( `' F " C ) )  -> 
( F `  B
)  e.  C )
86, 7sylan 283 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  ( `' F " C ) )  ->  ( F `  B )  e.  C
)
98ex 115 . . 3  |-  ( F  Fn  A  ->  ( B  e.  ( `' F " C )  -> 
( F `  B
)  e.  C ) )
105, 9jcad 307 . 2  |-  ( F  Fn  A  ->  ( B  e.  ( `' F " C )  -> 
( B  e.  A  /\  ( F `  B
)  e.  C ) ) )
11 fvimacnv 5749 . . . . 5  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( ( F `  B )  e.  C  <->  B  e.  ( `' F " C ) ) )
1211funfni 5422 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  e.  C  <->  B  e.  ( `' F " C ) ) )
1312biimpd 144 . . 3  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  e.  C  ->  B  e.  ( `' F " C ) ) )
1413expimpd 363 . 2  |-  ( F  Fn  A  ->  (
( B  e.  A  /\  ( F `  B
)  e.  C )  ->  B  e.  ( `' F " C ) ) )
1510, 14impbid 129 1  |-  ( F  Fn  A  ->  ( B  e.  ( `' F " C )  <->  ( B  e.  A  /\  ( F `  B )  e.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   `'ccnv 4717   dom cdm 4718   "cima 4721   Fun wfun 5311    Fn wfn 5312   ` cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325
This theorem is referenced by:  fniniseg  5754  fncnvima2  5755  rexsupp  5758  unpreima  5759  respreima  5762  fisumss  11898  fprodssdc  12096  tanvalap  12214  1arith  12885  ghmpreima  13798  ghmnsgpreima  13801  kerf1ghm  13806  psrbaglesuppg  14630  psrbagfi  14631  cncnpi  14896  cncnp  14898  cnpdis  14910  tx1cn  14937  tx2cn  14938  txcnmpt  14941  txdis1cn  14946  xmeterval  15103  cnbl0  15202  cnblcld  15203
  Copyright terms: Public domain W3C validator