| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpreima | Unicode version | ||
| Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| elpreima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass 5033 |
. . . . 5
| |
| 2 | 1 | sseli 3180 |
. . . 4
|
| 3 | fndm 5358 |
. . . . 5
| |
| 4 | 3 | eleq2d 2266 |
. . . 4
|
| 5 | 2, 4 | imbitrid 154 |
. . 3
|
| 6 | fnfun 5356 |
. . . . 5
| |
| 7 | fvimacnvi 5677 |
. . . . 5
| |
| 8 | 6, 7 | sylan 283 |
. . . 4
|
| 9 | 8 | ex 115 |
. . 3
|
| 10 | 5, 9 | jcad 307 |
. 2
|
| 11 | fvimacnv 5678 |
. . . . 5
| |
| 12 | 11 | funfni 5359 |
. . . 4
|
| 13 | 12 | biimpd 144 |
. . 3
|
| 14 | 13 | expimpd 363 |
. 2
|
| 15 | 10, 14 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 |
| This theorem is referenced by: fniniseg 5683 fncnvima2 5684 rexsupp 5687 unpreima 5688 respreima 5691 fisumss 11559 fprodssdc 11757 tanvalap 11875 1arith 12546 ghmpreima 13406 ghmnsgpreima 13409 kerf1ghm 13414 psrbaglesuppg 14236 cncnpi 14474 cncnp 14476 cnpdis 14488 tx1cn 14515 tx2cn 14516 txcnmpt 14519 txdis1cn 14524 xmeterval 14681 cnbl0 14780 cnblcld 14781 |
| Copyright terms: Public domain | W3C validator |