| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpreima | Unicode version | ||
| Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| elpreima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass 5045 |
. . . . 5
| |
| 2 | 1 | sseli 3189 |
. . . 4
|
| 3 | fndm 5373 |
. . . . 5
| |
| 4 | 3 | eleq2d 2275 |
. . . 4
|
| 5 | 2, 4 | imbitrid 154 |
. . 3
|
| 6 | fnfun 5371 |
. . . . 5
| |
| 7 | fvimacnvi 5694 |
. . . . 5
| |
| 8 | 6, 7 | sylan 283 |
. . . 4
|
| 9 | 8 | ex 115 |
. . 3
|
| 10 | 5, 9 | jcad 307 |
. 2
|
| 11 | fvimacnv 5695 |
. . . . 5
| |
| 12 | 11 | funfni 5376 |
. . . 4
|
| 13 | 12 | biimpd 144 |
. . 3
|
| 14 | 13 | expimpd 363 |
. 2
|
| 15 | 10, 14 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 |
| This theorem is referenced by: fniniseg 5700 fncnvima2 5701 rexsupp 5704 unpreima 5705 respreima 5708 fisumss 11703 fprodssdc 11901 tanvalap 12019 1arith 12690 ghmpreima 13602 ghmnsgpreima 13605 kerf1ghm 13610 psrbaglesuppg 14434 psrbagfi 14435 cncnpi 14700 cncnp 14702 cnpdis 14714 tx1cn 14741 tx2cn 14742 txcnmpt 14745 txdis1cn 14750 xmeterval 14907 cnbl0 15006 cnblcld 15007 |
| Copyright terms: Public domain | W3C validator |