ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnoprab Unicode version

Theorem fnoprab 5980
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 15-May-1995.)
Hypothesis
Ref Expression
fnoprab.1  |-  ( ph  ->  E! z ps )
Assertion
Ref Expression
fnoprab  |-  { <. <.
x ,  y >. ,  z >.  |  (
ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph }
Distinct variable groups:    x, y, z    ph, z
Allowed substitution hints:    ph( x, y)    ps( x, y, z)

Proof of Theorem fnoprab
StepHypRef Expression
1 fnoprab.1 . . 3  |-  ( ph  ->  E! z ps )
21gen2 1450 . 2  |-  A. x A. y ( ph  ->  E! z ps )
3 fnoprabg 5978 . 2  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  { <. <. x ,  y
>. ,  z >.  |  ( ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph } )
42, 3ax-mp 5 1  |-  { <. <.
x ,  y >. ,  z >.  |  (
ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351   E!weu 2026   {copab 4065    Fn wfn 5213   {coprab 5878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-fun 5220  df-fn 5221  df-oprab 5881
This theorem is referenced by:  ovid  5993  ov  5996
  Copyright terms: Public domain W3C validator