ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnoprab Unicode version

Theorem fnoprab 6021
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 15-May-1995.)
Hypothesis
Ref Expression
fnoprab.1  |-  ( ph  ->  E! z ps )
Assertion
Ref Expression
fnoprab  |-  { <. <.
x ,  y >. ,  z >.  |  (
ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph }
Distinct variable groups:    x, y, z    ph, z
Allowed substitution hints:    ph( x, y)    ps( x, y, z)

Proof of Theorem fnoprab
StepHypRef Expression
1 fnoprab.1 . . 3  |-  ( ph  ->  E! z ps )
21gen2 1461 . 2  |-  A. x A. y ( ph  ->  E! z ps )
3 fnoprabg 6019 . 2  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  { <. <. x ,  y
>. ,  z >.  |  ( ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph } )
42, 3ax-mp 5 1  |-  { <. <.
x ,  y >. ,  z >.  |  (
ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362   E!weu 2042   {copab 4089    Fn wfn 5249   {coprab 5919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-fun 5256  df-fn 5257  df-oprab 5922
This theorem is referenced by:  ovid  6035  ov  6038
  Copyright terms: Public domain W3C validator