ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnoprab Unicode version

Theorem fnoprab 5956
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 15-May-1995.)
Hypothesis
Ref Expression
fnoprab.1  |-  ( ph  ->  E! z ps )
Assertion
Ref Expression
fnoprab  |-  { <. <.
x ,  y >. ,  z >.  |  (
ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph }
Distinct variable groups:    x, y, z    ph, z
Allowed substitution hints:    ph( x, y)    ps( x, y, z)

Proof of Theorem fnoprab
StepHypRef Expression
1 fnoprab.1 . . 3  |-  ( ph  ->  E! z ps )
21gen2 1443 . 2  |-  A. x A. y ( ph  ->  E! z ps )
3 fnoprabg 5954 . 2  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  { <. <. x ,  y
>. ,  z >.  |  ( ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph } )
42, 3ax-mp 5 1  |-  { <. <.
x ,  y >. ,  z >.  |  (
ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1346   E!weu 2019   {copab 4049    Fn wfn 5193   {coprab 5854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-fun 5200  df-fn 5201  df-oprab 5857
This theorem is referenced by:  ovid  5969  ov  5972
  Copyright terms: Public domain W3C validator