ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovid Unicode version

Theorem ovid 6064
Description: The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovid.1  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E! z ph )
ovid.2  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
Assertion
Ref Expression
ovid  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ( x F y )  =  z  <->  ph ) )
Distinct variable groups:    x, y, z   
z, R    z, S
Allowed substitution hints:    ph( x, y, z)    R( x, y)    S( x, y)    F( x, y, z)

Proof of Theorem ovid
StepHypRef Expression
1 df-ov 5949 . . 3  |-  ( x F y )  =  ( F `  <. x ,  y >. )
21eqeq1i 2213 . 2  |-  ( ( x F y )  =  z  <->  ( F `  <. x ,  y
>. )  =  z
)
3 ovid.1 . . . . . 6  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E! z ph )
43fnoprab 6050 . . . . 5  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) }  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) }
5 ovid.2 . . . . . 6  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
65fneq1i 5369 . . . . 5  |-  ( F  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) } 
<->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) } )
74, 6mpbir 146 . . . 4  |-  F  Fn  {
<. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) }
8 opabid 4303 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  R  /\  y  e.  S ) }  <->  ( x  e.  R  /\  y  e.  S ) )
98biimpri 133 . . . 4  |-  ( ( x  e.  R  /\  y  e.  S )  -> 
<. x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  R  /\  y  e.  S ) } )
10 fnopfvb 5622 . . . 4  |-  ( ( F  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) }  /\  <. x ,  y
>.  e.  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) } )  ->  (
( F `  <. x ,  y >. )  =  z  <->  <. <. x ,  y
>. ,  z >.  e.  F ) )
117, 9, 10sylancr 414 . . 3  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ( F `  <. x ,  y >.
)  =  z  <->  <. <. x ,  y >. ,  z
>.  e.  F ) )
125eleq2i 2272 . . . . 5  |-  ( <. <. x ,  y >. ,  z >.  e.  F  <->  <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } )
13 oprabid 5978 . . . . 5  |-  ( <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }  <->  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) )
1412, 13bitri 184 . . . 4  |-  ( <. <. x ,  y >. ,  z >.  e.  F  <->  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) )
1514baib 921 . . 3  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( <. <. x ,  y
>. ,  z >.  e.  F  <->  ph ) )
1611, 15bitrd 188 . 2  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ( F `  <. x ,  y >.
)  =  z  <->  ph ) )
172, 16bitrid 192 1  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ( x F y )  =  z  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E!weu 2054    e. wcel 2176   <.cop 3636   {copab 4105    Fn wfn 5267   ` cfv 5272  (class class class)co 5946   {coprab 5947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-ov 5949  df-oprab 5950
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator