ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovid Unicode version

Theorem ovid 6121
Description: The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovid.1  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E! z ph )
ovid.2  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
Assertion
Ref Expression
ovid  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ( x F y )  =  z  <->  ph ) )
Distinct variable groups:    x, y, z   
z, R    z, S
Allowed substitution hints:    ph( x, y, z)    R( x, y)    S( x, y)    F( x, y, z)

Proof of Theorem ovid
StepHypRef Expression
1 df-ov 6004 . . 3  |-  ( x F y )  =  ( F `  <. x ,  y >. )
21eqeq1i 2237 . 2  |-  ( ( x F y )  =  z  <->  ( F `  <. x ,  y
>. )  =  z
)
3 ovid.1 . . . . . 6  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E! z ph )
43fnoprab 6107 . . . . 5  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) }  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) }
5 ovid.2 . . . . . 6  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
65fneq1i 5415 . . . . 5  |-  ( F  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) } 
<->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) } )
74, 6mpbir 146 . . . 4  |-  F  Fn  {
<. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) }
8 opabid 4344 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  R  /\  y  e.  S ) }  <->  ( x  e.  R  /\  y  e.  S ) )
98biimpri 133 . . . 4  |-  ( ( x  e.  R  /\  y  e.  S )  -> 
<. x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  R  /\  y  e.  S ) } )
10 fnopfvb 5673 . . . 4  |-  ( ( F  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) }  /\  <. x ,  y
>.  e.  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) } )  ->  (
( F `  <. x ,  y >. )  =  z  <->  <. <. x ,  y
>. ,  z >.  e.  F ) )
117, 9, 10sylancr 414 . . 3  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ( F `  <. x ,  y >.
)  =  z  <->  <. <. x ,  y >. ,  z
>.  e.  F ) )
125eleq2i 2296 . . . . 5  |-  ( <. <. x ,  y >. ,  z >.  e.  F  <->  <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } )
13 oprabid 6033 . . . . 5  |-  ( <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }  <->  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) )
1412, 13bitri 184 . . . 4  |-  ( <. <. x ,  y >. ,  z >.  e.  F  <->  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) )
1514baib 924 . . 3  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( <. <. x ,  y
>. ,  z >.  e.  F  <->  ph ) )
1611, 15bitrd 188 . 2  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ( F `  <. x ,  y >.
)  =  z  <->  ph ) )
172, 16bitrid 192 1  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ( x F y )  =  z  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E!weu 2077    e. wcel 2200   <.cop 3669   {copab 4144    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   {coprab 6002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-oprab 6005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator