ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovid Unicode version

Theorem ovid 5743
Description: The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovid.1  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E! z ph )
ovid.2  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
Assertion
Ref Expression
ovid  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ( x F y )  =  z  <->  ph ) )
Distinct variable groups:    x, y, z   
z, R    z, S
Allowed substitution hints:    ph( x, y, z)    R( x, y)    S( x, y)    F( x, y, z)

Proof of Theorem ovid
StepHypRef Expression
1 df-ov 5637 . . 3  |-  ( x F y )  =  ( F `  <. x ,  y >. )
21eqeq1i 2095 . 2  |-  ( ( x F y )  =  z  <->  ( F `  <. x ,  y
>. )  =  z
)
3 ovid.1 . . . . . 6  |-  ( ( x  e.  R  /\  y  e.  S )  ->  E! z ph )
43fnoprab 5730 . . . . 5  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) }  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) }
5 ovid.2 . . . . . 6  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
65fneq1i 5094 . . . . 5  |-  ( F  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) } 
<->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) } )
74, 6mpbir 144 . . . 4  |-  F  Fn  {
<. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) }
8 opabid 4075 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  R  /\  y  e.  S ) }  <->  ( x  e.  R  /\  y  e.  S ) )
98biimpri 131 . . . 4  |-  ( ( x  e.  R  /\  y  e.  S )  -> 
<. x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  R  /\  y  e.  S ) } )
10 fnopfvb 5330 . . . 4  |-  ( ( F  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) }  /\  <. x ,  y
>.  e.  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) } )  ->  (
( F `  <. x ,  y >. )  =  z  <->  <. <. x ,  y
>. ,  z >.  e.  F ) )
117, 9, 10sylancr 405 . . 3  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ( F `  <. x ,  y >.
)  =  z  <->  <. <. x ,  y >. ,  z
>.  e.  F ) )
125eleq2i 2154 . . . . 5  |-  ( <. <. x ,  y >. ,  z >.  e.  F  <->  <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } )
13 oprabid 5663 . . . . 5  |-  ( <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }  <->  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) )
1412, 13bitri 182 . . . 4  |-  ( <. <. x ,  y >. ,  z >.  e.  F  <->  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) )
1514baib 866 . . 3  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( <. <. x ,  y
>. ,  z >.  e.  F  <->  ph ) )
1611, 15bitrd 186 . 2  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ( F `  <. x ,  y >.
)  =  z  <->  ph ) )
172, 16syl5bb 190 1  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ( x F y )  =  z  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   E!weu 1948   <.cop 3444   {copab 3890    Fn wfn 4997   ` cfv 5002  (class class class)co 5634   {coprab 5635
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-setind 4343
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fn 5005  df-fv 5010  df-ov 5637  df-oprab 5638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator