ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpofun Unicode version

Theorem mpofun 5925
Description: The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.)
Hypothesis
Ref Expression
mpofun.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
mpofun  |-  Fun  F
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem mpofun
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqtr3 2177 . . . . . 6  |-  ( ( z  =  C  /\  w  =  C )  ->  z  =  w )
21ad2ant2l 500 . . . . 5  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  -> 
z  =  w )
32gen2 1430 . . . 4  |-  A. z A. w ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  -> 
z  =  w )
4 eqeq1 2164 . . . . . 6  |-  ( z  =  w  ->  (
z  =  C  <->  w  =  C ) )
54anbi2d 460 . . . . 5  |-  ( z  =  w  ->  (
( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  w  =  C
) ) )
65mo4 2067 . . . 4  |-  ( E* z ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  A. z A. w ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  -> 
z  =  w ) )
73, 6mpbir 145 . . 3  |-  E* z
( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )
87funoprab 5923 . 2  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
9 mpofun.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
10 df-mpo 5831 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
119, 10eqtri 2178 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
1211funeqi 5193 . 2  |-  ( Fun 
F  <->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) } )
138, 12mpbir 145 1  |-  Fun  F
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1333    = wceq 1335   E*wmo 2007    e. wcel 2128   Fun wfun 5166   {coprab 5827    e. cmpo 5828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-br 3968  df-opab 4028  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-fun 5174  df-oprab 5830  df-mpo 5831
This theorem is referenced by:  elmpocl  6020  ofexg  6038  mpoexxg  6160  mpoxopn0yelv  6188
  Copyright terms: Public domain W3C validator