ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpofun Unicode version

Theorem mpofun 5944
Description: The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.)
Hypothesis
Ref Expression
mpofun.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
mpofun  |-  Fun  F
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem mpofun
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqtr3 2185 . . . . . 6  |-  ( ( z  =  C  /\  w  =  C )  ->  z  =  w )
21ad2ant2l 500 . . . . 5  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  -> 
z  =  w )
32gen2 1438 . . . 4  |-  A. z A. w ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  -> 
z  =  w )
4 eqeq1 2172 . . . . . 6  |-  ( z  =  w  ->  (
z  =  C  <->  w  =  C ) )
54anbi2d 460 . . . . 5  |-  ( z  =  w  ->  (
( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  w  =  C
) ) )
65mo4 2075 . . . 4  |-  ( E* z ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  A. z A. w ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  -> 
z  =  w ) )
73, 6mpbir 145 . . 3  |-  E* z
( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )
87funoprab 5942 . 2  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
9 mpofun.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
10 df-mpo 5847 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
119, 10eqtri 2186 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
1211funeqi 5209 . 2  |-  ( Fun 
F  <->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) } )
138, 12mpbir 145 1  |-  Fun  F
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341    = wceq 1343   E*wmo 2015    e. wcel 2136   Fun wfun 5182   {coprab 5843    e. cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-fun 5190  df-oprab 5846  df-mpo 5847
This theorem is referenced by:  elmpocl  6036  ofexg  6054  mpoexxg  6178  mpoexw  6181  mpoxopn0yelv  6207
  Copyright terms: Public domain W3C validator