ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpofun Unicode version

Theorem mpofun 6060
Description: The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.)
Hypothesis
Ref Expression
mpofun.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
mpofun  |-  Fun  F
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem mpofun
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqtr3 2226 . . . . . 6  |-  ( ( z  =  C  /\  w  =  C )  ->  z  =  w )
21ad2ant2l 508 . . . . 5  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  -> 
z  =  w )
32gen2 1474 . . . 4  |-  A. z A. w ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  -> 
z  =  w )
4 eqeq1 2213 . . . . . 6  |-  ( z  =  w  ->  (
z  =  C  <->  w  =  C ) )
54anbi2d 464 . . . . 5  |-  ( z  =  w  ->  (
( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  w  =  C
) ) )
65mo4 2116 . . . 4  |-  ( E* z ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  A. z A. w ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  -> 
z  =  w ) )
73, 6mpbir 146 . . 3  |-  E* z
( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )
87funoprab 6058 . 2  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
9 mpofun.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
10 df-mpo 5962 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
119, 10eqtri 2227 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
1211funeqi 5301 . 2  |-  ( Fun 
F  <->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) } )
138, 12mpbir 146 1  |-  Fun  F
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373   E*wmo 2056    e. wcel 2177   Fun wfun 5274   {coprab 5958    e. cmpo 5959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-fun 5282  df-oprab 5961  df-mpo 5962
This theorem is referenced by:  elmpocl  6154  ofexg  6176  mpoexxg  6309  mpoexw  6312  mpoxopn0yelv  6338
  Copyright terms: Public domain W3C validator