ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnoprab GIF version

Theorem fnoprab 5840
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 15-May-1995.)
Hypothesis
Ref Expression
fnoprab.1 (𝜑 → ∃!𝑧𝜓)
Assertion
Ref Expression
fnoprab {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem fnoprab
StepHypRef Expression
1 fnoprab.1 . . 3 (𝜑 → ∃!𝑧𝜓)
21gen2 1409 . 2 𝑥𝑦(𝜑 → ∃!𝑧𝜓)
3 fnoprabg 5838 . 2 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑})
42, 3ax-mp 5 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1312  ∃!weu 1975  {copab 3956   Fn wfn 5086  {coprab 5741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-fun 5093  df-fn 5094  df-oprab 5744
This theorem is referenced by:  ovid  5853  ov  5856
  Copyright terms: Public domain W3C validator