ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsn Unicode version

Theorem fnsn 5271
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
fnsn.1  |-  A  e. 
_V
fnsn.2  |-  B  e. 
_V
Assertion
Ref Expression
fnsn  |-  { <. A ,  B >. }  Fn  { A }

Proof of Theorem fnsn
StepHypRef Expression
1 fnsn.1 . 2  |-  A  e. 
_V
2 fnsn.2 . 2  |-  B  e. 
_V
3 fnsng 5264 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { <. A ,  B >. }  Fn  { A } )
41, 2, 3mp2an 426 1  |-  { <. A ,  B >. }  Fn  { A }
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   _Vcvv 2738   {csn 3593   <.cop 3596    Fn wfn 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-fun 5219  df-fn 5220
This theorem is referenced by:  f1osn  5502  fvsnun2  5715  elixpsn  6735
  Copyright terms: Public domain W3C validator