ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsng Unicode version

Theorem fnsng 5235
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
fnsng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  Fn  { A } )

Proof of Theorem fnsng
StepHypRef Expression
1 funsng 5234 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  Fun  { <. A ,  B >. } )
2 dmsnopg 5075 . . 3  |-  ( B  e.  W  ->  dom  {
<. A ,  B >. }  =  { A }
)
32adantl 275 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  dom  { <. A ,  B >. }  =  { A } )
4 df-fn 5191 . 2  |-  ( {
<. A ,  B >. }  Fn  { A }  <->  ( Fun  { <. A ,  B >. }  /\  dom  {
<. A ,  B >. }  =  { A }
) )
51, 3, 4sylanbrc 414 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  Fn  { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {csn 3576   <.cop 3579   dom cdm 4604   Fun wfun 5182    Fn wfn 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-fun 5190  df-fn 5191
This theorem is referenced by:  fnsn  5242  fnunsn  5295  fsnunfv  5686  tfr0dm  6290  ennnfonelemhom  12348
  Copyright terms: Public domain W3C validator