ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsng Unicode version

Theorem fnsng 5367
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
fnsng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  Fn  { A } )

Proof of Theorem fnsng
StepHypRef Expression
1 funsng 5366 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  Fun  { <. A ,  B >. } )
2 dmsnopg 5199 . . 3  |-  ( B  e.  W  ->  dom  {
<. A ,  B >. }  =  { A }
)
32adantl 277 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  dom  { <. A ,  B >. }  =  { A } )
4 df-fn 5320 . 2  |-  ( {
<. A ,  B >. }  Fn  { A }  <->  ( Fun  { <. A ,  B >. }  /\  dom  {
<. A ,  B >. }  =  { A }
) )
51, 3, 4sylanbrc 417 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  Fn  { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {csn 3666   <.cop 3669   dom cdm 4718   Fun wfun 5311    Fn wfn 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-fun 5319  df-fn 5320
This theorem is referenced by:  fnsn  5374  fnunsn  5429  fsnunfv  5839  tfr0dm  6466  ennnfonelemhom  12981
  Copyright terms: Public domain W3C validator