ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsn GIF version

Theorem fnsn 5328
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
fnsn.1 𝐴 ∈ V
fnsn.2 𝐵 ∈ V
Assertion
Ref Expression
fnsn {⟨𝐴, 𝐵⟩} Fn {𝐴}

Proof of Theorem fnsn
StepHypRef Expression
1 fnsn.1 . 2 𝐴 ∈ V
2 fnsn.2 . 2 𝐵 ∈ V
3 fnsng 5321 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} Fn {𝐴})
41, 2, 3mp2an 426 1 {⟨𝐴, 𝐵⟩} Fn {𝐴}
Colors of variables: wff set class
Syntax hints:  wcel 2176  Vcvv 2772  {csn 3633  cop 3636   Fn wfn 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-fun 5273  df-fn 5274
This theorem is referenced by:  f1osn  5562  fvsnun2  5782  elixpsn  6822  xnn0nnen  10582
  Copyright terms: Public domain W3C validator