ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funres Unicode version

Theorem funres 5239
Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funres  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )

Proof of Theorem funres
StepHypRef Expression
1 resss 4915 . 2  |-  ( F  |`  A )  C_  F
2 funss 5217 . 2  |-  ( ( F  |`  A )  C_  F  ->  ( Fun  F  ->  Fun  ( F  |`  A ) ) )
31, 2ax-mp 5 1  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3121    |` cres 4613   Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-br 3990  df-opab 4051  df-rel 4618  df-cnv 4619  df-co 4620  df-res 4623  df-fun 5200
This theorem is referenced by:  fnssresb  5310  fnresi  5315  fores  5429  respreima  5624  resfunexg  5717  funfvima  5727  smores  6271  smores2  6273  frecfun  6374  sbthlem7  6940  setsfun  12451  setsfun0  12452
  Copyright terms: Public domain W3C validator