ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funres Unicode version

Theorem funres 5273
Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funres  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )

Proof of Theorem funres
StepHypRef Expression
1 resss 4946 . 2  |-  ( F  |`  A )  C_  F
2 funss 5251 . 2  |-  ( ( F  |`  A )  C_  F  ->  ( Fun  F  ->  Fun  ( F  |`  A ) ) )
31, 2ax-mp 5 1  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3144    |` cres 4643   Fun wfun 5226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-in 3150  df-ss 3157  df-br 4019  df-opab 4080  df-rel 4648  df-cnv 4649  df-co 4650  df-res 4653  df-fun 5234
This theorem is referenced by:  fnssresb  5344  fnresi  5349  fores  5463  respreima  5661  resfunexg  5754  funfvima  5765  smores  6312  smores2  6314  frecfun  6415  sbthlem7  6987  setsfun  12542  setsfun0  12543
  Copyright terms: Public domain W3C validator