ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funres Unicode version

Theorem funres 5295
Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funres  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )

Proof of Theorem funres
StepHypRef Expression
1 resss 4966 . 2  |-  ( F  |`  A )  C_  F
2 funss 5273 . 2  |-  ( ( F  |`  A )  C_  F  ->  ( Fun  F  ->  Fun  ( F  |`  A ) ) )
31, 2ax-mp 5 1  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3153    |` cres 4661   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-br 4030  df-opab 4091  df-rel 4666  df-cnv 4667  df-co 4668  df-res 4671  df-fun 5256
This theorem is referenced by:  fnssresb  5366  fnresi  5371  fores  5486  respreima  5686  resfunexg  5779  funfvima  5790  smores  6345  smores2  6347  frecfun  6448  residfi  6999  sbthlem7  7022  setsfun  12653  setsfun0  12654
  Copyright terms: Public domain W3C validator