ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funres Unicode version

Theorem funres 5331
Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funres  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )

Proof of Theorem funres
StepHypRef Expression
1 resss 5002 . 2  |-  ( F  |`  A )  C_  F
2 funss 5309 . 2  |-  ( ( F  |`  A )  C_  F  ->  ( Fun  F  ->  Fun  ( F  |`  A ) ) )
31, 2ax-mp 5 1  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3174    |` cres 4695   Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187  df-br 4060  df-opab 4122  df-rel 4700  df-cnv 4701  df-co 4702  df-res 4705  df-fun 5292
This theorem is referenced by:  fnssresb  5407  fnresi  5413  fores  5530  respreima  5731  resfunexg  5828  funfvima  5839  smores  6401  smores2  6403  frecfun  6504  residfi  7068  sbthlem7  7091  setsfun  12982  setsfun0  12983
  Copyright terms: Public domain W3C validator