ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeu Unicode version

Theorem funeu 5243
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funeu  |-  ( ( Fun  F  /\  A F B )  ->  E! y  A F y )
Distinct variable groups:    y, A    y, F
Allowed substitution hint:    B( y)

Proof of Theorem funeu
StepHypRef Expression
1 funrel 5235 . . . 4  |-  ( Fun 
F  ->  Rel  F )
2 releldm 4864 . . . 4  |-  ( ( Rel  F  /\  A F B )  ->  A  e.  dom  F )
31, 2sylan 283 . . 3  |-  ( ( Fun  F  /\  A F B )  ->  A  e.  dom  F )
4 eldmg 4824 . . . 4  |-  ( A  e.  dom  F  -> 
( A  e.  dom  F  <->  E. y  A F
y ) )
54ibi 176 . . 3  |-  ( A  e.  dom  F  ->  E. y  A F
y )
63, 5syl 14 . 2  |-  ( ( Fun  F  /\  A F B )  ->  E. y  A F y )
7 funmo 5233 . . . 4  |-  ( Fun 
F  ->  E* y  A F y )
87adantr 276 . . 3  |-  ( ( Fun  F  /\  A F B )  ->  E* y  A F y )
9 df-mo 2030 . . 3  |-  ( E* y  A F y  <-> 
( E. y  A F y  ->  E! y  A F y ) )
108, 9sylib 122 . 2  |-  ( ( Fun  F  /\  A F B )  ->  ( E. y  A F
y  ->  E! y  A F y ) )
116, 10mpd 13 1  |-  ( ( Fun  F  /\  A F B )  ->  E! y  A F y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1492   E!weu 2026   E*wmo 2027    e. wcel 2148   class class class wbr 4005   dom cdm 4628   Rel wrel 4633   Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-fun 5220
This theorem is referenced by:  funeu2  5244  funbrfv  5556
  Copyright terms: Public domain W3C validator