ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeu Unicode version

Theorem funeu 5315
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funeu  |-  ( ( Fun  F  /\  A F B )  ->  E! y  A F y )
Distinct variable groups:    y, A    y, F
Allowed substitution hint:    B( y)

Proof of Theorem funeu
StepHypRef Expression
1 funrel 5307 . . . 4  |-  ( Fun 
F  ->  Rel  F )
2 releldm 4932 . . . 4  |-  ( ( Rel  F  /\  A F B )  ->  A  e.  dom  F )
31, 2sylan 283 . . 3  |-  ( ( Fun  F  /\  A F B )  ->  A  e.  dom  F )
4 eldmg 4892 . . . 4  |-  ( A  e.  dom  F  -> 
( A  e.  dom  F  <->  E. y  A F
y ) )
54ibi 176 . . 3  |-  ( A  e.  dom  F  ->  E. y  A F
y )
63, 5syl 14 . 2  |-  ( ( Fun  F  /\  A F B )  ->  E. y  A F y )
7 funmo 5305 . . . 4  |-  ( Fun 
F  ->  E* y  A F y )
87adantr 276 . . 3  |-  ( ( Fun  F  /\  A F B )  ->  E* y  A F y )
9 df-mo 2059 . . 3  |-  ( E* y  A F y  <-> 
( E. y  A F y  ->  E! y  A F y ) )
108, 9sylib 122 . 2  |-  ( ( Fun  F  /\  A F B )  ->  ( E. y  A F
y  ->  E! y  A F y ) )
116, 10mpd 13 1  |-  ( ( Fun  F  /\  A F B )  ->  E! y  A F y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1516   E!weu 2055   E*wmo 2056    e. wcel 2178   class class class wbr 4059   dom cdm 4693   Rel wrel 4698   Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-fun 5292
This theorem is referenced by:  funeu2  5316  funbrfv  5640
  Copyright terms: Public domain W3C validator