ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvdm2 Unicode version

Theorem funfvdm2 5621
Description: The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by Jim Kingdon, 1-Jan-2019.)
Assertion
Ref Expression
funfvdm2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. {
y  |  A F y } )
Distinct variable groups:    y, A    y, F

Proof of Theorem funfvdm2
StepHypRef Expression
1 funfvdm 5620 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. ( F " { A }
) )
2 imasng 5030 . . . 4  |-  ( A  e.  dom  F  -> 
( F " { A } )  =  {
y  |  A F y } )
32adantl 277 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F " { A } )  =  {
y  |  A F y } )
43unieqd 3846 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  U. ( F " { A } )  =  U. { y  |  A F y } )
51, 4eqtrd 2226 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. {
y  |  A F y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   {csn 3618   U.cuni 3835   class class class wbr 4029   dom cdm 4659   "cima 4662   Fun wfun 5248   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262
This theorem is referenced by:  funfvdm2f  5622
  Copyright terms: Public domain W3C validator