ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvdm2 Unicode version

Theorem funfvdm2 5550
Description: The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by Jim Kingdon, 1-Jan-2019.)
Assertion
Ref Expression
funfvdm2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. {
y  |  A F y } )
Distinct variable groups:    y, A    y, F

Proof of Theorem funfvdm2
StepHypRef Expression
1 funfvdm 5549 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. ( F " { A }
) )
2 imasng 4969 . . . 4  |-  ( A  e.  dom  F  -> 
( F " { A } )  =  {
y  |  A F y } )
32adantl 275 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F " { A } )  =  {
y  |  A F y } )
43unieqd 3800 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  U. ( F " { A } )  =  U. { y  |  A F y } )
51, 4eqtrd 2198 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. {
y  |  A F y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {cab 2151   {csn 3576   U.cuni 3789   class class class wbr 3982   dom cdm 4604   "cima 4607   Fun wfun 5182   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  funfvdm2f  5551
  Copyright terms: Public domain W3C validator