ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvdm2f Unicode version

Theorem funfvdm2f 5667
Description: The value of a function. Version of funfvdm2 5666 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 1-Jan-2019.)
Hypotheses
Ref Expression
funfvdm2f.1  |-  F/_ y A
funfvdm2f.2  |-  F/_ y F
Assertion
Ref Expression
funfvdm2f  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. {
y  |  A F y } )

Proof of Theorem funfvdm2f
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 funfvdm2 5666 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. {
w  |  A F w } )
2 funfvdm2f.1 . . . . 5  |-  F/_ y A
3 funfvdm2f.2 . . . . 5  |-  F/_ y F
4 nfcv 2350 . . . . 5  |-  F/_ y
w
52, 3, 4nfbr 4106 . . . 4  |-  F/ y  A F w
6 nfv 1552 . . . 4  |-  F/ w  A F y
7 breq2 4063 . . . 4  |-  ( w  =  y  ->  ( A F w  <->  A F
y ) )
85, 6, 7cbvab 2331 . . 3  |-  { w  |  A F w }  =  { y  |  A F y }
98unieqi 3874 . 2  |-  U. {
w  |  A F w }  =  U. { y  |  A F y }
101, 9eqtrdi 2256 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. {
y  |  A F y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   {cab 2193   F/_wnfc 2337   U.cuni 3864   class class class wbr 4059   dom cdm 4693   Fun wfun 5284   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator