ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvdm2f Unicode version

Theorem funfvdm2f 5584
Description: The value of a function. Version of funfvdm2 5583 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 1-Jan-2019.)
Hypotheses
Ref Expression
funfvdm2f.1  |-  F/_ y A
funfvdm2f.2  |-  F/_ y F
Assertion
Ref Expression
funfvdm2f  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. {
y  |  A F y } )

Proof of Theorem funfvdm2f
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 funfvdm2 5583 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. {
w  |  A F w } )
2 funfvdm2f.1 . . . . 5  |-  F/_ y A
3 funfvdm2f.2 . . . . 5  |-  F/_ y F
4 nfcv 2319 . . . . 5  |-  F/_ y
w
52, 3, 4nfbr 4051 . . . 4  |-  F/ y  A F w
6 nfv 1528 . . . 4  |-  F/ w  A F y
7 breq2 4009 . . . 4  |-  ( w  =  y  ->  ( A F w  <->  A F
y ) )
85, 6, 7cbvab 2301 . . 3  |-  { w  |  A F w }  =  { y  |  A F y }
98unieqi 3821 . 2  |-  U. {
w  |  A F w }  =  U. { y  |  A F y }
101, 9eqtrdi 2226 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. {
y  |  A F y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {cab 2163   F/_wnfc 2306   U.cuni 3811   class class class wbr 4005   dom cdm 4628   Fun wfun 5212   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator