ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvdm2f Unicode version

Theorem funfvdm2f 5551
Description: The value of a function. Version of funfvdm2 5550 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 1-Jan-2019.)
Hypotheses
Ref Expression
funfvdm2f.1  |-  F/_ y A
funfvdm2f.2  |-  F/_ y F
Assertion
Ref Expression
funfvdm2f  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. {
y  |  A F y } )

Proof of Theorem funfvdm2f
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 funfvdm2 5550 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. {
w  |  A F w } )
2 funfvdm2f.1 . . . . 5  |-  F/_ y A
3 funfvdm2f.2 . . . . 5  |-  F/_ y F
4 nfcv 2308 . . . . 5  |-  F/_ y
w
52, 3, 4nfbr 4028 . . . 4  |-  F/ y  A F w
6 nfv 1516 . . . 4  |-  F/ w  A F y
7 breq2 3986 . . . 4  |-  ( w  =  y  ->  ( A F w  <->  A F
y ) )
85, 6, 7cbvab 2290 . . 3  |-  { w  |  A F w }  =  { y  |  A F y }
98unieqi 3799 . 2  |-  U. {
w  |  A F w }  =  U. { y  |  A F y }
101, 9eqtrdi 2215 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. {
y  |  A F y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {cab 2151   F/_wnfc 2295   U.cuni 3789   class class class wbr 3982   dom cdm 4604   Fun wfun 5182   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator