| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfvdm2 | GIF version | ||
| Description: The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by Jim Kingdon, 1-Jan-2019.) |
| Ref | Expression |
|---|---|
| funfvdm2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvdm 5660 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) | |
| 2 | imasng 5061 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → (𝐹 “ {𝐴}) = {𝑦 ∣ 𝐴𝐹𝑦}) | |
| 3 | 2 | adantl 277 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹 “ {𝐴}) = {𝑦 ∣ 𝐴𝐹𝑦}) |
| 4 | 3 | unieqd 3870 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∪ (𝐹 “ {𝐴}) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
| 5 | 1, 4 | eqtrd 2239 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cab 2192 {csn 3638 ∪ cuni 3859 class class class wbr 4054 dom cdm 4688 “ cima 4691 Fun wfun 5279 ‘cfv 5285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-fv 5293 |
| This theorem is referenced by: funfvdm2f 5662 |
| Copyright terms: Public domain | W3C validator |