ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvdm2 GIF version

Theorem funfvdm2 5625
Description: The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by Jim Kingdon, 1-Jan-2019.)
Assertion
Ref Expression
funfvdm2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem funfvdm2
StepHypRef Expression
1 funfvdm 5624 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = (𝐹 “ {𝐴}))
2 imasng 5034 . . . 4 (𝐴 ∈ dom 𝐹 → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
32adantl 277 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
43unieqd 3850 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
51, 4eqtrd 2229 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {cab 2182  {csn 3622   cuni 3839   class class class wbr 4033  dom cdm 4663  cima 4666  Fun wfun 5252  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  funfvdm2f  5626
  Copyright terms: Public domain W3C validator