ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvdm2 GIF version

Theorem funfvdm2 5560
Description: The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by Jim Kingdon, 1-Jan-2019.)
Assertion
Ref Expression
funfvdm2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem funfvdm2
StepHypRef Expression
1 funfvdm 5559 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = (𝐹 “ {𝐴}))
2 imasng 4976 . . . 4 (𝐴 ∈ dom 𝐹 → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
32adantl 275 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
43unieqd 3807 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
51, 4eqtrd 2203 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  {cab 2156  {csn 3583   cuni 3796   class class class wbr 3989  dom cdm 4611  cima 4614  Fun wfun 5192  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by:  funfvdm2f  5561
  Copyright terms: Public domain W3C validator