| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfvdm2f | GIF version | ||
| Description: The value of a function. Version of funfvdm2 5656 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 1-Jan-2019.) |
| Ref | Expression |
|---|---|
| funfvdm2f.1 | ⊢ Ⅎ𝑦𝐴 |
| funfvdm2f.2 | ⊢ Ⅎ𝑦𝐹 |
| Ref | Expression |
|---|---|
| funfvdm2f | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvdm2 5656 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ {𝑤 ∣ 𝐴𝐹𝑤}) | |
| 2 | funfvdm2f.1 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 3 | funfvdm2f.2 | . . . . 5 ⊢ Ⅎ𝑦𝐹 | |
| 4 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
| 5 | 2, 3, 4 | nfbr 4098 | . . . 4 ⊢ Ⅎ𝑦 𝐴𝐹𝑤 |
| 6 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑤 𝐴𝐹𝑦 | |
| 7 | breq2 4055 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝐴𝐹𝑤 ↔ 𝐴𝐹𝑦)) | |
| 8 | 5, 6, 7 | cbvab 2330 | . . 3 ⊢ {𝑤 ∣ 𝐴𝐹𝑤} = {𝑦 ∣ 𝐴𝐹𝑦} |
| 9 | 8 | unieqi 3866 | . 2 ⊢ ∪ {𝑤 ∣ 𝐴𝐹𝑤} = ∪ {𝑦 ∣ 𝐴𝐹𝑦} |
| 10 | 1, 9 | eqtrdi 2255 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cab 2192 Ⅎwnfc 2336 ∪ cuni 3856 class class class wbr 4051 dom cdm 4683 Fun wfun 5274 ‘cfv 5280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |