ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvdm2f GIF version

Theorem funfvdm2f 5622
Description: The value of a function. Version of funfvdm2 5621 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 1-Jan-2019.)
Hypotheses
Ref Expression
funfvdm2f.1 𝑦𝐴
funfvdm2f.2 𝑦𝐹
Assertion
Ref Expression
funfvdm2f ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})

Proof of Theorem funfvdm2f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 funfvdm2 5621 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑤𝐴𝐹𝑤})
2 funfvdm2f.1 . . . . 5 𝑦𝐴
3 funfvdm2f.2 . . . . 5 𝑦𝐹
4 nfcv 2336 . . . . 5 𝑦𝑤
52, 3, 4nfbr 4075 . . . 4 𝑦 𝐴𝐹𝑤
6 nfv 1539 . . . 4 𝑤 𝐴𝐹𝑦
7 breq2 4033 . . . 4 (𝑤 = 𝑦 → (𝐴𝐹𝑤𝐴𝐹𝑦))
85, 6, 7cbvab 2317 . . 3 {𝑤𝐴𝐹𝑤} = {𝑦𝐴𝐹𝑦}
98unieqi 3845 . 2 {𝑤𝐴𝐹𝑤} = {𝑦𝐴𝐹𝑦}
101, 9eqtrdi 2242 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  {cab 2179  wnfc 2323   cuni 3835   class class class wbr 4029  dom cdm 4659  Fun wfun 5248  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator