ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvdm2f GIF version

Theorem funfvdm2f 5657
Description: The value of a function. Version of funfvdm2 5656 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 1-Jan-2019.)
Hypotheses
Ref Expression
funfvdm2f.1 𝑦𝐴
funfvdm2f.2 𝑦𝐹
Assertion
Ref Expression
funfvdm2f ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})

Proof of Theorem funfvdm2f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 funfvdm2 5656 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑤𝐴𝐹𝑤})
2 funfvdm2f.1 . . . . 5 𝑦𝐴
3 funfvdm2f.2 . . . . 5 𝑦𝐹
4 nfcv 2349 . . . . 5 𝑦𝑤
52, 3, 4nfbr 4098 . . . 4 𝑦 𝐴𝐹𝑤
6 nfv 1552 . . . 4 𝑤 𝐴𝐹𝑦
7 breq2 4055 . . . 4 (𝑤 = 𝑦 → (𝐴𝐹𝑤𝐴𝐹𝑦))
85, 6, 7cbvab 2330 . . 3 {𝑤𝐴𝐹𝑤} = {𝑦𝐴𝐹𝑦}
98unieqi 3866 . 2 {𝑤𝐴𝐹𝑤} = {𝑦𝐴𝐹𝑦}
101, 9eqtrdi 2255 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {cab 2192  wnfc 2336   cuni 3856   class class class wbr 4051  dom cdm 4683  Fun wfun 5274  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator