| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfvdm2f | GIF version | ||
| Description: The value of a function. Version of funfvdm2 5642 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 1-Jan-2019.) |
| Ref | Expression |
|---|---|
| funfvdm2f.1 | ⊢ Ⅎ𝑦𝐴 |
| funfvdm2f.2 | ⊢ Ⅎ𝑦𝐹 |
| Ref | Expression |
|---|---|
| funfvdm2f | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvdm2 5642 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ {𝑤 ∣ 𝐴𝐹𝑤}) | |
| 2 | funfvdm2f.1 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 3 | funfvdm2f.2 | . . . . 5 ⊢ Ⅎ𝑦𝐹 | |
| 4 | nfcv 2347 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
| 5 | 2, 3, 4 | nfbr 4089 | . . . 4 ⊢ Ⅎ𝑦 𝐴𝐹𝑤 |
| 6 | nfv 1550 | . . . 4 ⊢ Ⅎ𝑤 𝐴𝐹𝑦 | |
| 7 | breq2 4047 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝐴𝐹𝑤 ↔ 𝐴𝐹𝑦)) | |
| 8 | 5, 6, 7 | cbvab 2328 | . . 3 ⊢ {𝑤 ∣ 𝐴𝐹𝑤} = {𝑦 ∣ 𝐴𝐹𝑦} |
| 9 | 8 | unieqi 3859 | . 2 ⊢ ∪ {𝑤 ∣ 𝐴𝐹𝑤} = ∪ {𝑦 ∣ 𝐴𝐹𝑦} |
| 10 | 1, 9 | eqtrdi 2253 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 {cab 2190 Ⅎwnfc 2334 ∪ cuni 3849 class class class wbr 4043 dom cdm 4674 Fun wfun 5264 ‘cfv 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |