ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvdm2f GIF version

Theorem funfvdm2f 5582
Description: The value of a function. Version of funfvdm2 5581 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 1-Jan-2019.)
Hypotheses
Ref Expression
funfvdm2f.1 𝑦𝐴
funfvdm2f.2 𝑦𝐹
Assertion
Ref Expression
funfvdm2f ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})

Proof of Theorem funfvdm2f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 funfvdm2 5581 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑤𝐴𝐹𝑤})
2 funfvdm2f.1 . . . . 5 𝑦𝐴
3 funfvdm2f.2 . . . . 5 𝑦𝐹
4 nfcv 2319 . . . . 5 𝑦𝑤
52, 3, 4nfbr 4050 . . . 4 𝑦 𝐴𝐹𝑤
6 nfv 1528 . . . 4 𝑤 𝐴𝐹𝑦
7 breq2 4008 . . . 4 (𝑤 = 𝑦 → (𝐴𝐹𝑤𝐴𝐹𝑦))
85, 6, 7cbvab 2301 . . 3 {𝑤𝐴𝐹𝑤} = {𝑦𝐴𝐹𝑦}
98unieqi 3820 . 2 {𝑤𝐴𝐹𝑤} = {𝑦𝐴𝐹𝑦}
101, 9eqtrdi 2226 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  {cab 2163  wnfc 2306   cuni 3810   class class class wbr 4004  dom cdm 4627  Fun wfun 5211  cfv 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator