| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfvdm2f | GIF version | ||
| Description: The value of a function. Version of funfvdm2 5697 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 1-Jan-2019.) |
| Ref | Expression |
|---|---|
| funfvdm2f.1 | ⊢ Ⅎ𝑦𝐴 |
| funfvdm2f.2 | ⊢ Ⅎ𝑦𝐹 |
| Ref | Expression |
|---|---|
| funfvdm2f | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvdm2 5697 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ {𝑤 ∣ 𝐴𝐹𝑤}) | |
| 2 | funfvdm2f.1 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 3 | funfvdm2f.2 | . . . . 5 ⊢ Ⅎ𝑦𝐹 | |
| 4 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
| 5 | 2, 3, 4 | nfbr 4129 | . . . 4 ⊢ Ⅎ𝑦 𝐴𝐹𝑤 |
| 6 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑤 𝐴𝐹𝑦 | |
| 7 | breq2 4086 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝐴𝐹𝑤 ↔ 𝐴𝐹𝑦)) | |
| 8 | 5, 6, 7 | cbvab 2353 | . . 3 ⊢ {𝑤 ∣ 𝐴𝐹𝑤} = {𝑦 ∣ 𝐴𝐹𝑦} |
| 9 | 8 | unieqi 3897 | . 2 ⊢ ∪ {𝑤 ∣ 𝐴𝐹𝑤} = ∪ {𝑦 ∣ 𝐴𝐹𝑦} |
| 10 | 1, 9 | eqtrdi 2278 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 Ⅎwnfc 2359 ∪ cuni 3887 class class class wbr 4082 dom cdm 4718 Fun wfun 5311 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |