ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funpr Unicode version

Theorem funpr 5287
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
Hypotheses
Ref Expression
funpr.1  |-  A  e. 
_V
funpr.2  |-  B  e. 
_V
funpr.3  |-  C  e. 
_V
funpr.4  |-  D  e. 
_V
Assertion
Ref Expression
funpr  |-  ( A  =/=  B  ->  Fun  {
<. A ,  C >. , 
<. B ,  D >. } )

Proof of Theorem funpr
StepHypRef Expression
1 funpr.1 . . 3  |-  A  e. 
_V
2 funpr.2 . . 3  |-  B  e. 
_V
31, 2pm3.2i 272 . 2  |-  ( A  e.  _V  /\  B  e.  _V )
4 funpr.3 . . 3  |-  C  e. 
_V
5 funpr.4 . . 3  |-  D  e. 
_V
64, 5pm3.2i 272 . 2  |-  ( C  e.  _V  /\  D  e.  _V )
7 funprg 5285 . 2  |-  ( ( ( A  e.  _V  /\  B  e.  _V )  /\  ( C  e.  _V  /\  D  e.  _V )  /\  A  =/=  B
)  ->  Fun  { <. A ,  C >. ,  <. B ,  D >. } )
83, 6, 7mp3an12 1338 1  |-  ( A  =/=  B  ->  Fun  {
<. A ,  C >. , 
<. B ,  D >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2160    =/= wne 2360   _Vcvv 2752   {cpr 3608   <.cop 3610   Fun wfun 5229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-fun 5237
This theorem is referenced by:  funtp  5288  fpr  5719
  Copyright terms: Public domain W3C validator