ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funpr GIF version

Theorem funpr 5311
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
Hypotheses
Ref Expression
funpr.1 𝐴 ∈ V
funpr.2 𝐵 ∈ V
funpr.3 𝐶 ∈ V
funpr.4 𝐷 ∈ V
Assertion
Ref Expression
funpr (𝐴𝐵 → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})

Proof of Theorem funpr
StepHypRef Expression
1 funpr.1 . . 3 𝐴 ∈ V
2 funpr.2 . . 3 𝐵 ∈ V
31, 2pm3.2i 272 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V)
4 funpr.3 . . 3 𝐶 ∈ V
5 funpr.4 . . 3 𝐷 ∈ V
64, 5pm3.2i 272 . 2 (𝐶 ∈ V ∧ 𝐷 ∈ V)
7 funprg 5309 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V) ∧ 𝐴𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
83, 6, 7mp3an12 1338 1 (𝐴𝐵 → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wne 2367  Vcvv 2763  {cpr 3624  cop 3626  Fun wfun 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-fun 5261
This theorem is referenced by:  funtp  5312  fpr  5747
  Copyright terms: Public domain W3C validator