ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funpr GIF version

Theorem funpr 5320
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
Hypotheses
Ref Expression
funpr.1 𝐴 ∈ V
funpr.2 𝐵 ∈ V
funpr.3 𝐶 ∈ V
funpr.4 𝐷 ∈ V
Assertion
Ref Expression
funpr (𝐴𝐵 → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})

Proof of Theorem funpr
StepHypRef Expression
1 funpr.1 . . 3 𝐴 ∈ V
2 funpr.2 . . 3 𝐵 ∈ V
31, 2pm3.2i 272 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V)
4 funpr.3 . . 3 𝐶 ∈ V
5 funpr.4 . . 3 𝐷 ∈ V
64, 5pm3.2i 272 . 2 (𝐶 ∈ V ∧ 𝐷 ∈ V)
7 funprg 5318 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V) ∧ 𝐴𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
83, 6, 7mp3an12 1339 1 (𝐴𝐵 → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  wne 2375  Vcvv 2771  {cpr 3633  cop 3635  Fun wfun 5262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-fun 5270
This theorem is referenced by:  funtp  5321  fpr  5756
  Copyright terms: Public domain W3C validator