Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funpr | GIF version |
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) |
Ref | Expression |
---|---|
funpr.1 | ⊢ 𝐴 ∈ V |
funpr.2 | ⊢ 𝐵 ∈ V |
funpr.3 | ⊢ 𝐶 ∈ V |
funpr.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
funpr | ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funpr.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | funpr.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | pm3.2i 270 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
4 | funpr.3 | . . 3 ⊢ 𝐶 ∈ V | |
5 | funpr.4 | . . 3 ⊢ 𝐷 ∈ V | |
6 | 4, 5 | pm3.2i 270 | . 2 ⊢ (𝐶 ∈ V ∧ 𝐷 ∈ V) |
7 | funprg 5238 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | |
8 | 3, 6, 7 | mp3an12 1317 | 1 ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ≠ wne 2336 Vcvv 2726 {cpr 3577 〈cop 3579 Fun wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-fun 5190 |
This theorem is referenced by: funtp 5241 fpr 5667 |
Copyright terms: Public domain | W3C validator |