![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funpr | GIF version |
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) |
Ref | Expression |
---|---|
funpr.1 | ⊢ 𝐴 ∈ V |
funpr.2 | ⊢ 𝐵 ∈ V |
funpr.3 | ⊢ 𝐶 ∈ V |
funpr.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
funpr | ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funpr.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | funpr.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | pm3.2i 272 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
4 | funpr.3 | . . 3 ⊢ 𝐶 ∈ V | |
5 | funpr.4 | . . 3 ⊢ 𝐷 ∈ V | |
6 | 4, 5 | pm3.2i 272 | . 2 ⊢ (𝐶 ∈ V ∧ 𝐷 ∈ V) |
7 | funprg 5278 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | |
8 | 3, 6, 7 | mp3an12 1337 | 1 ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2158 ≠ wne 2357 Vcvv 2749 {cpr 3605 〈cop 3607 Fun wfun 5222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-fun 5230 |
This theorem is referenced by: funtp 5281 fpr 5711 |
Copyright terms: Public domain | W3C validator |