| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resfunexg | Unicode version | ||
| Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| resfunexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 5358 |
. . . . 5
| |
| 2 | funfvex 5643 |
. . . . . 6
| |
| 3 | 2 | ralrimiva 2603 |
. . . . 5
|
| 4 | fnasrng 5814 |
. . . . 5
| |
| 5 | 1, 3, 4 | 3syl 17 |
. . . 4
|
| 6 | 5 | adantr 276 |
. . 3
|
| 7 | 1 | adantr 276 |
. . . . 5
|
| 8 | funfn 5347 |
. . . . 5
| |
| 9 | 7, 8 | sylib 122 |
. . . 4
|
| 10 | dffn5im 5678 |
. . . 4
| |
| 11 | 9, 10 | syl 14 |
. . 3
|
| 12 | vex 2802 |
. . . . . . . . 9
| |
| 13 | opexg 4313 |
. . . . . . . . 9
| |
| 14 | 12, 2, 13 | sylancr 414 |
. . . . . . . 8
|
| 15 | 14 | ralrimiva 2603 |
. . . . . . 7
|
| 16 | dmmptg 5225 |
. . . . . . 7
| |
| 17 | 1, 15, 16 | 3syl 17 |
. . . . . 6
|
| 18 | 17 | imaeq2d 5067 |
. . . . 5
|
| 19 | imadmrn 5077 |
. . . . 5
| |
| 20 | 18, 19 | eqtr3di 2277 |
. . . 4
|
| 21 | 20 | adantr 276 |
. . 3
|
| 22 | 6, 11, 21 | 3eqtr4d 2272 |
. 2
|
| 23 | funmpt 5355 |
. . 3
| |
| 24 | dmresexg 5027 |
. . . 4
| |
| 25 | 24 | adantl 277 |
. . 3
|
| 26 | funimaexg 5404 |
. . 3
| |
| 27 | 23, 25, 26 | sylancr 414 |
. 2
|
| 28 | 22, 27 | eqeltrd 2306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 |
| This theorem is referenced by: fnex 5860 ofexg 6221 cofunexg 6252 rdgivallem 6525 frecex 6538 frecsuclem 6550 djudoml 7397 djudomr 7398 fihashf1rn 11005 qnnen 12997 |
| Copyright terms: Public domain | W3C validator |