Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resfunexg | Unicode version |
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.) |
Ref | Expression |
---|---|
resfunexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 5239 | . . . . 5 | |
2 | funfvex 5513 | . . . . . 6 | |
3 | 2 | ralrimiva 2543 | . . . . 5 |
4 | fnasrng 5676 | . . . . 5 | |
5 | 1, 3, 4 | 3syl 17 | . . . 4 |
6 | 5 | adantr 274 | . . 3 |
7 | 1 | adantr 274 | . . . . 5 |
8 | funfn 5228 | . . . . 5 | |
9 | 7, 8 | sylib 121 | . . . 4 |
10 | dffn5im 5542 | . . . 4 | |
11 | 9, 10 | syl 14 | . . 3 |
12 | vex 2733 | . . . . . . . . 9 | |
13 | opexg 4213 | . . . . . . . . 9 | |
14 | 12, 2, 13 | sylancr 412 | . . . . . . . 8 |
15 | 14 | ralrimiva 2543 | . . . . . . 7 |
16 | dmmptg 5108 | . . . . . . 7 | |
17 | 1, 15, 16 | 3syl 17 | . . . . . 6 |
18 | 17 | imaeq2d 4953 | . . . . 5 |
19 | imadmrn 4963 | . . . . 5 | |
20 | 18, 19 | eqtr3di 2218 | . . . 4 |
21 | 20 | adantr 274 | . . 3 |
22 | 6, 11, 21 | 3eqtr4d 2213 | . 2 |
23 | funmpt 5236 | . . 3 | |
24 | dmresexg 4914 | . . . 4 | |
25 | 24 | adantl 275 | . . 3 |
26 | funimaexg 5282 | . . 3 | |
27 | 23, 25, 26 | sylancr 412 | . 2 |
28 | 22, 27 | eqeltrd 2247 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 cvv 2730 cop 3586 cmpt 4050 cdm 4611 crn 4612 cres 4613 cima 4614 wfun 5192 wfn 5193 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 |
This theorem is referenced by: fnex 5718 ofexg 6065 cofunexg 6088 rdgivallem 6360 frecex 6373 frecsuclem 6385 djudoml 7196 djudomr 7197 fihashf1rn 10723 qnnen 12386 |
Copyright terms: Public domain | W3C validator |