ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resfunexg Unicode version

Theorem resfunexg 5717
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
resfunexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )

Proof of Theorem resfunexg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funres 5239 . . . . 5  |-  ( Fun 
A  ->  Fun  ( A  |`  B ) )
2 funfvex 5513 . . . . . 6  |-  ( ( Fun  ( A  |`  B )  /\  x  e.  dom  ( A  |`  B ) )  -> 
( ( A  |`  B ) `  x
)  e.  _V )
32ralrimiva 2543 . . . . 5  |-  ( Fun  ( A  |`  B )  ->  A. x  e.  dom  ( A  |`  B ) ( ( A  |`  B ) `  x
)  e.  _V )
4 fnasrng 5676 . . . . 5  |-  ( A. x  e.  dom  ( A  |`  B ) ( ( A  |`  B ) `  x )  e.  _V  ->  ( x  e.  dom  ( A  |`  B ) 
|->  ( ( A  |`  B ) `  x
) )  =  ran  ( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
) )
51, 3, 43syl 17 . . . 4  |-  ( Fun 
A  ->  ( x  e.  dom  ( A  |`  B )  |->  ( ( A  |`  B ) `  x ) )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
65adantr 274 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  (
x  e.  dom  ( A  |`  B )  |->  ( ( A  |`  B ) `
 x ) )  =  ran  ( x  e.  dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
71adantr 274 . . . . 5  |-  ( ( Fun  A  /\  B  e.  C )  ->  Fun  ( A  |`  B ) )
8 funfn 5228 . . . . 5  |-  ( Fun  ( A  |`  B )  <-> 
( A  |`  B )  Fn  dom  ( A  |`  B ) )
97, 8sylib 121 . . . 4  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  Fn 
dom  ( A  |`  B ) )
10 dffn5im 5542 . . . 4  |-  ( ( A  |`  B )  Fn  dom  ( A  |`  B )  ->  ( A  |`  B )  =  ( x  e.  dom  ( A  |`  B ) 
|->  ( ( A  |`  B ) `  x
) ) )
119, 10syl 14 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  =  ( x  e.  dom  ( A  |`  B ) 
|->  ( ( A  |`  B ) `  x
) ) )
12 vex 2733 . . . . . . . . 9  |-  x  e. 
_V
13 opexg 4213 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  ( ( A  |`  B ) `  x
)  e.  _V )  -> 
<. x ,  ( ( A  |`  B ) `  x ) >.  e.  _V )
1412, 2, 13sylancr 412 . . . . . . . 8  |-  ( ( Fun  ( A  |`  B )  /\  x  e.  dom  ( A  |`  B ) )  ->  <. x ,  ( ( A  |`  B ) `  x ) >.  e.  _V )
1514ralrimiva 2543 . . . . . . 7  |-  ( Fun  ( A  |`  B )  ->  A. x  e.  dom  ( A  |`  B )
<. x ,  ( ( A  |`  B ) `  x ) >.  e.  _V )
16 dmmptg 5108 . . . . . . 7  |-  ( A. x  e.  dom  ( A  |`  B ) <. x ,  ( ( A  |`  B ) `  x
) >.  e.  _V  ->  dom  ( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
)  =  dom  ( A  |`  B ) )
171, 15, 163syl 17 . . . . . 6  |-  ( Fun 
A  ->  dom  ( x  e.  dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )  =  dom  ( A  |`  B ) )
1817imaeq2d 4953 . . . . 5  |-  ( Fun 
A  ->  ( (
x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. ) " dom  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )  =  ( ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) " dom  ( A  |`  B ) ) )
19 imadmrn 4963 . . . . 5  |-  ( ( x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. ) " dom  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )
2018, 19eqtr3di 2218 . . . 4  |-  ( Fun 
A  ->  ( (
x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. ) " dom  ( A  |`  B ) )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
2120adantr 274 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  (
( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
) " dom  ( A  |`  B ) )  =  ran  ( x  e.  dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
226, 11, 213eqtr4d 2213 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  =  ( ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) " dom  ( A  |`  B ) ) )
23 funmpt 5236 . . 3  |-  Fun  (
x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. )
24 dmresexg 4914 . . . 4  |-  ( B  e.  C  ->  dom  ( A  |`  B )  e.  _V )
2524adantl 275 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  dom  ( A  |`  B )  e.  _V )
26 funimaexg 5282 . . 3  |-  ( ( Fun  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )  /\  dom  ( A  |`  B )  e.  _V )  -> 
( ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) " dom  ( A  |`  B ) )  e.  _V )
2723, 25, 26sylancr 412 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  (
( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
) " dom  ( A  |`  B ) )  e.  _V )
2822, 27eqeltrd 2247 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   _Vcvv 2730   <.cop 3586    |-> cmpt 4050   dom cdm 4611   ran crn 4612    |` cres 4613   "cima 4614   Fun wfun 5192    Fn wfn 5193   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206
This theorem is referenced by:  fnex  5718  ofexg  6065  cofunexg  6088  rdgivallem  6360  frecex  6373  frecsuclem  6385  djudoml  7196  djudomr  7197  fihashf1rn  10723  qnnen  12386
  Copyright terms: Public domain W3C validator