ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resfunexg Unicode version

Theorem resfunexg 5780
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
resfunexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )

Proof of Theorem resfunexg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funres 5296 . . . . 5  |-  ( Fun 
A  ->  Fun  ( A  |`  B ) )
2 funfvex 5572 . . . . . 6  |-  ( ( Fun  ( A  |`  B )  /\  x  e.  dom  ( A  |`  B ) )  -> 
( ( A  |`  B ) `  x
)  e.  _V )
32ralrimiva 2567 . . . . 5  |-  ( Fun  ( A  |`  B )  ->  A. x  e.  dom  ( A  |`  B ) ( ( A  |`  B ) `  x
)  e.  _V )
4 fnasrng 5739 . . . . 5  |-  ( A. x  e.  dom  ( A  |`  B ) ( ( A  |`  B ) `  x )  e.  _V  ->  ( x  e.  dom  ( A  |`  B ) 
|->  ( ( A  |`  B ) `  x
) )  =  ran  ( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
) )
51, 3, 43syl 17 . . . 4  |-  ( Fun 
A  ->  ( x  e.  dom  ( A  |`  B )  |->  ( ( A  |`  B ) `  x ) )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
65adantr 276 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  (
x  e.  dom  ( A  |`  B )  |->  ( ( A  |`  B ) `
 x ) )  =  ran  ( x  e.  dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
71adantr 276 . . . . 5  |-  ( ( Fun  A  /\  B  e.  C )  ->  Fun  ( A  |`  B ) )
8 funfn 5285 . . . . 5  |-  ( Fun  ( A  |`  B )  <-> 
( A  |`  B )  Fn  dom  ( A  |`  B ) )
97, 8sylib 122 . . . 4  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  Fn 
dom  ( A  |`  B ) )
10 dffn5im 5603 . . . 4  |-  ( ( A  |`  B )  Fn  dom  ( A  |`  B )  ->  ( A  |`  B )  =  ( x  e.  dom  ( A  |`  B ) 
|->  ( ( A  |`  B ) `  x
) ) )
119, 10syl 14 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  =  ( x  e.  dom  ( A  |`  B ) 
|->  ( ( A  |`  B ) `  x
) ) )
12 vex 2763 . . . . . . . . 9  |-  x  e. 
_V
13 opexg 4258 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  ( ( A  |`  B ) `  x
)  e.  _V )  -> 
<. x ,  ( ( A  |`  B ) `  x ) >.  e.  _V )
1412, 2, 13sylancr 414 . . . . . . . 8  |-  ( ( Fun  ( A  |`  B )  /\  x  e.  dom  ( A  |`  B ) )  ->  <. x ,  ( ( A  |`  B ) `  x ) >.  e.  _V )
1514ralrimiva 2567 . . . . . . 7  |-  ( Fun  ( A  |`  B )  ->  A. x  e.  dom  ( A  |`  B )
<. x ,  ( ( A  |`  B ) `  x ) >.  e.  _V )
16 dmmptg 5164 . . . . . . 7  |-  ( A. x  e.  dom  ( A  |`  B ) <. x ,  ( ( A  |`  B ) `  x
) >.  e.  _V  ->  dom  ( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
)  =  dom  ( A  |`  B ) )
171, 15, 163syl 17 . . . . . 6  |-  ( Fun 
A  ->  dom  ( x  e.  dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )  =  dom  ( A  |`  B ) )
1817imaeq2d 5006 . . . . 5  |-  ( Fun 
A  ->  ( (
x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. ) " dom  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )  =  ( ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) " dom  ( A  |`  B ) ) )
19 imadmrn 5016 . . . . 5  |-  ( ( x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. ) " dom  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )
2018, 19eqtr3di 2241 . . . 4  |-  ( Fun 
A  ->  ( (
x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. ) " dom  ( A  |`  B ) )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
2120adantr 276 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  (
( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
) " dom  ( A  |`  B ) )  =  ran  ( x  e.  dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
226, 11, 213eqtr4d 2236 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  =  ( ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) " dom  ( A  |`  B ) ) )
23 funmpt 5293 . . 3  |-  Fun  (
x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. )
24 dmresexg 4966 . . . 4  |-  ( B  e.  C  ->  dom  ( A  |`  B )  e.  _V )
2524adantl 277 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  dom  ( A  |`  B )  e.  _V )
26 funimaexg 5339 . . 3  |-  ( ( Fun  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )  /\  dom  ( A  |`  B )  e.  _V )  -> 
( ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) " dom  ( A  |`  B ) )  e.  _V )
2723, 25, 26sylancr 414 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  (
( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
) " dom  ( A  |`  B ) )  e.  _V )
2822, 27eqeltrd 2270 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760   <.cop 3622    |-> cmpt 4091   dom cdm 4660   ran crn 4661    |` cres 4662   "cima 4663   Fun wfun 5249    Fn wfn 5250   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263
This theorem is referenced by:  fnex  5781  ofexg  6137  cofunexg  6163  rdgivallem  6436  frecex  6449  frecsuclem  6461  djudoml  7281  djudomr  7282  fihashf1rn  10862  qnnen  12591
  Copyright terms: Public domain W3C validator