Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resfunexg | Unicode version |
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.) |
Ref | Expression |
---|---|
resfunexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 5229 | . . . . 5 | |
2 | funfvex 5503 | . . . . . 6 | |
3 | 2 | ralrimiva 2539 | . . . . 5 |
4 | fnasrng 5665 | . . . . 5 | |
5 | 1, 3, 4 | 3syl 17 | . . . 4 |
6 | 5 | adantr 274 | . . 3 |
7 | 1 | adantr 274 | . . . . 5 |
8 | funfn 5218 | . . . . 5 | |
9 | 7, 8 | sylib 121 | . . . 4 |
10 | dffn5im 5532 | . . . 4 | |
11 | 9, 10 | syl 14 | . . 3 |
12 | vex 2729 | . . . . . . . . 9 | |
13 | opexg 4206 | . . . . . . . . 9 | |
14 | 12, 2, 13 | sylancr 411 | . . . . . . . 8 |
15 | 14 | ralrimiva 2539 | . . . . . . 7 |
16 | dmmptg 5101 | . . . . . . 7 | |
17 | 1, 15, 16 | 3syl 17 | . . . . . 6 |
18 | 17 | imaeq2d 4946 | . . . . 5 |
19 | imadmrn 4956 | . . . . 5 | |
20 | 18, 19 | eqtr3di 2214 | . . . 4 |
21 | 20 | adantr 274 | . . 3 |
22 | 6, 11, 21 | 3eqtr4d 2208 | . 2 |
23 | funmpt 5226 | . . 3 | |
24 | dmresexg 4907 | . . . 4 | |
25 | 24 | adantl 275 | . . 3 |
26 | funimaexg 5272 | . . 3 | |
27 | 23, 25, 26 | sylancr 411 | . 2 |
28 | 22, 27 | eqeltrd 2243 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 cvv 2726 cop 3579 cmpt 4043 cdm 4604 crn 4605 cres 4606 cima 4607 wfun 5182 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: fnex 5707 ofexg 6054 cofunexg 6077 rdgivallem 6349 frecex 6362 frecsuclem 6374 djudoml 7175 djudomr 7176 fihashf1rn 10702 qnnen 12364 |
Copyright terms: Public domain | W3C validator |