ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resfunexg Unicode version

Theorem resfunexg 5750
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
resfunexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )

Proof of Theorem resfunexg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funres 5269 . . . . 5  |-  ( Fun 
A  ->  Fun  ( A  |`  B ) )
2 funfvex 5544 . . . . . 6  |-  ( ( Fun  ( A  |`  B )  /\  x  e.  dom  ( A  |`  B ) )  -> 
( ( A  |`  B ) `  x
)  e.  _V )
32ralrimiva 2560 . . . . 5  |-  ( Fun  ( A  |`  B )  ->  A. x  e.  dom  ( A  |`  B ) ( ( A  |`  B ) `  x
)  e.  _V )
4 fnasrng 5709 . . . . 5  |-  ( A. x  e.  dom  ( A  |`  B ) ( ( A  |`  B ) `  x )  e.  _V  ->  ( x  e.  dom  ( A  |`  B ) 
|->  ( ( A  |`  B ) `  x
) )  =  ran  ( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
) )
51, 3, 43syl 17 . . . 4  |-  ( Fun 
A  ->  ( x  e.  dom  ( A  |`  B )  |->  ( ( A  |`  B ) `  x ) )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
65adantr 276 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  (
x  e.  dom  ( A  |`  B )  |->  ( ( A  |`  B ) `
 x ) )  =  ran  ( x  e.  dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
71adantr 276 . . . . 5  |-  ( ( Fun  A  /\  B  e.  C )  ->  Fun  ( A  |`  B ) )
8 funfn 5258 . . . . 5  |-  ( Fun  ( A  |`  B )  <-> 
( A  |`  B )  Fn  dom  ( A  |`  B ) )
97, 8sylib 122 . . . 4  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  Fn 
dom  ( A  |`  B ) )
10 dffn5im 5574 . . . 4  |-  ( ( A  |`  B )  Fn  dom  ( A  |`  B )  ->  ( A  |`  B )  =  ( x  e.  dom  ( A  |`  B ) 
|->  ( ( A  |`  B ) `  x
) ) )
119, 10syl 14 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  =  ( x  e.  dom  ( A  |`  B ) 
|->  ( ( A  |`  B ) `  x
) ) )
12 vex 2752 . . . . . . . . 9  |-  x  e. 
_V
13 opexg 4240 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  ( ( A  |`  B ) `  x
)  e.  _V )  -> 
<. x ,  ( ( A  |`  B ) `  x ) >.  e.  _V )
1412, 2, 13sylancr 414 . . . . . . . 8  |-  ( ( Fun  ( A  |`  B )  /\  x  e.  dom  ( A  |`  B ) )  ->  <. x ,  ( ( A  |`  B ) `  x ) >.  e.  _V )
1514ralrimiva 2560 . . . . . . 7  |-  ( Fun  ( A  |`  B )  ->  A. x  e.  dom  ( A  |`  B )
<. x ,  ( ( A  |`  B ) `  x ) >.  e.  _V )
16 dmmptg 5138 . . . . . . 7  |-  ( A. x  e.  dom  ( A  |`  B ) <. x ,  ( ( A  |`  B ) `  x
) >.  e.  _V  ->  dom  ( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
)  =  dom  ( A  |`  B ) )
171, 15, 163syl 17 . . . . . 6  |-  ( Fun 
A  ->  dom  ( x  e.  dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )  =  dom  ( A  |`  B ) )
1817imaeq2d 4982 . . . . 5  |-  ( Fun 
A  ->  ( (
x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. ) " dom  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )  =  ( ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) " dom  ( A  |`  B ) ) )
19 imadmrn 4992 . . . . 5  |-  ( ( x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. ) " dom  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )
2018, 19eqtr3di 2235 . . . 4  |-  ( Fun 
A  ->  ( (
x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. ) " dom  ( A  |`  B ) )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
2120adantr 276 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  (
( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
) " dom  ( A  |`  B ) )  =  ran  ( x  e.  dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
226, 11, 213eqtr4d 2230 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  =  ( ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) " dom  ( A  |`  B ) ) )
23 funmpt 5266 . . 3  |-  Fun  (
x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. )
24 dmresexg 4942 . . . 4  |-  ( B  e.  C  ->  dom  ( A  |`  B )  e.  _V )
2524adantl 277 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  dom  ( A  |`  B )  e.  _V )
26 funimaexg 5312 . . 3  |-  ( ( Fun  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )  /\  dom  ( A  |`  B )  e.  _V )  -> 
( ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) " dom  ( A  |`  B ) )  e.  _V )
2723, 25, 26sylancr 414 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  (
( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
) " dom  ( A  |`  B ) )  e.  _V )
2822, 27eqeltrd 2264 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   A.wral 2465   _Vcvv 2749   <.cop 3607    |-> cmpt 4076   dom cdm 4638   ran crn 4639    |` cres 4640   "cima 4641   Fun wfun 5222    Fn wfn 5223   ` cfv 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236
This theorem is referenced by:  fnex  5751  ofexg  6100  cofunexg  6123  rdgivallem  6395  frecex  6408  frecsuclem  6420  djudoml  7231  djudomr  7232  fihashf1rn  10781  qnnen  12445
  Copyright terms: Public domain W3C validator