| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resfunexg | Unicode version | ||
| Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| resfunexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 5299 |
. . . . 5
| |
| 2 | funfvex 5575 |
. . . . . 6
| |
| 3 | 2 | ralrimiva 2570 |
. . . . 5
|
| 4 | fnasrng 5742 |
. . . . 5
| |
| 5 | 1, 3, 4 | 3syl 17 |
. . . 4
|
| 6 | 5 | adantr 276 |
. . 3
|
| 7 | 1 | adantr 276 |
. . . . 5
|
| 8 | funfn 5288 |
. . . . 5
| |
| 9 | 7, 8 | sylib 122 |
. . . 4
|
| 10 | dffn5im 5606 |
. . . 4
| |
| 11 | 9, 10 | syl 14 |
. . 3
|
| 12 | vex 2766 |
. . . . . . . . 9
| |
| 13 | opexg 4261 |
. . . . . . . . 9
| |
| 14 | 12, 2, 13 | sylancr 414 |
. . . . . . . 8
|
| 15 | 14 | ralrimiva 2570 |
. . . . . . 7
|
| 16 | dmmptg 5167 |
. . . . . . 7
| |
| 17 | 1, 15, 16 | 3syl 17 |
. . . . . 6
|
| 18 | 17 | imaeq2d 5009 |
. . . . 5
|
| 19 | imadmrn 5019 |
. . . . 5
| |
| 20 | 18, 19 | eqtr3di 2244 |
. . . 4
|
| 21 | 20 | adantr 276 |
. . 3
|
| 22 | 6, 11, 21 | 3eqtr4d 2239 |
. 2
|
| 23 | funmpt 5296 |
. . 3
| |
| 24 | dmresexg 4969 |
. . . 4
| |
| 25 | 24 | adantl 277 |
. . 3
|
| 26 | funimaexg 5342 |
. . 3
| |
| 27 | 23, 25, 26 | sylancr 414 |
. 2
|
| 28 | 22, 27 | eqeltrd 2273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 |
| This theorem is referenced by: fnex 5784 ofexg 6140 cofunexg 6166 rdgivallem 6439 frecex 6452 frecsuclem 6464 djudoml 7286 djudomr 7287 fihashf1rn 10880 qnnen 12648 |
| Copyright terms: Public domain | W3C validator |