| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resfunexg | Unicode version | ||
| Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| resfunexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 5311 |
. . . . 5
| |
| 2 | funfvex 5592 |
. . . . . 6
| |
| 3 | 2 | ralrimiva 2578 |
. . . . 5
|
| 4 | fnasrng 5759 |
. . . . 5
| |
| 5 | 1, 3, 4 | 3syl 17 |
. . . 4
|
| 6 | 5 | adantr 276 |
. . 3
|
| 7 | 1 | adantr 276 |
. . . . 5
|
| 8 | funfn 5300 |
. . . . 5
| |
| 9 | 7, 8 | sylib 122 |
. . . 4
|
| 10 | dffn5im 5623 |
. . . 4
| |
| 11 | 9, 10 | syl 14 |
. . 3
|
| 12 | vex 2774 |
. . . . . . . . 9
| |
| 13 | opexg 4271 |
. . . . . . . . 9
| |
| 14 | 12, 2, 13 | sylancr 414 |
. . . . . . . 8
|
| 15 | 14 | ralrimiva 2578 |
. . . . . . 7
|
| 16 | dmmptg 5179 |
. . . . . . 7
| |
| 17 | 1, 15, 16 | 3syl 17 |
. . . . . 6
|
| 18 | 17 | imaeq2d 5021 |
. . . . 5
|
| 19 | imadmrn 5031 |
. . . . 5
| |
| 20 | 18, 19 | eqtr3di 2252 |
. . . 4
|
| 21 | 20 | adantr 276 |
. . 3
|
| 22 | 6, 11, 21 | 3eqtr4d 2247 |
. 2
|
| 23 | funmpt 5308 |
. . 3
| |
| 24 | dmresexg 4981 |
. . . 4
| |
| 25 | 24 | adantl 277 |
. . 3
|
| 26 | funimaexg 5357 |
. . 3
| |
| 27 | 23, 25, 26 | sylancr 414 |
. 2
|
| 28 | 22, 27 | eqeltrd 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 |
| This theorem is referenced by: fnex 5805 ofexg 6162 cofunexg 6193 rdgivallem 6466 frecex 6479 frecsuclem 6491 djudoml 7330 djudomr 7331 fihashf1rn 10931 qnnen 12773 |
| Copyright terms: Public domain | W3C validator |