Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funres | GIF version |
Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
funres | ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 4908 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
2 | funss 5207 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ↾ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3116 ↾ cres 4606 Fun wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-br 3983 df-opab 4044 df-rel 4611 df-cnv 4612 df-co 4613 df-res 4616 df-fun 5190 |
This theorem is referenced by: fnssresb 5300 fnresi 5305 fores 5419 respreima 5613 resfunexg 5706 funfvima 5716 smores 6260 smores2 6262 frecfun 6363 sbthlem7 6928 setsfun 12429 setsfun0 12430 |
Copyright terms: Public domain | W3C validator |