![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funres | GIF version |
Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
funres | ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 4967 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
2 | funss 5274 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ↾ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3154 ↾ cres 4662 Fun wfun 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 df-br 4031 df-opab 4092 df-rel 4667 df-cnv 4668 df-co 4669 df-res 4672 df-fun 5257 |
This theorem is referenced by: fnssresb 5367 fnresi 5372 fores 5487 respreima 5687 resfunexg 5780 funfvima 5791 smores 6347 smores2 6349 frecfun 6450 residfi 7001 sbthlem7 7024 setsfun 12656 setsfun0 12657 |
Copyright terms: Public domain | W3C validator |