ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funres GIF version

Theorem funres 5229
Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funres (Fun 𝐹 → Fun (𝐹𝐴))

Proof of Theorem funres
StepHypRef Expression
1 resss 4908 . 2 (𝐹𝐴) ⊆ 𝐹
2 funss 5207 . 2 ((𝐹𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹𝐴)))
31, 2ax-mp 5 1 (Fun 𝐹 → Fun (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3116  cres 4606  Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-res 4616  df-fun 5190
This theorem is referenced by:  fnssresb  5300  fnresi  5305  fores  5419  respreima  5613  resfunexg  5706  funfvima  5716  smores  6260  smores2  6262  frecfun  6363  sbthlem7  6928  setsfun  12429  setsfun0  12430
  Copyright terms: Public domain W3C validator