| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funres | GIF version | ||
| Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| funres | ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5025 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 2 | funss 5333 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ↾ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3197 ↾ cres 4718 Fun wfun 5308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-br 4083 df-opab 4145 df-rel 4723 df-cnv 4724 df-co 4725 df-res 4728 df-fun 5316 |
| This theorem is referenced by: fnssresb 5431 fnresi 5437 fores 5554 respreima 5756 resfunexg 5853 funfvima 5864 smores 6428 smores2 6430 frecfun 6531 residfi 7095 sbthlem7 7118 setsfun 13053 setsfun0 13054 |
| Copyright terms: Public domain | W3C validator |