| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funres | GIF version | ||
| Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| funres | ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 4970 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 2 | funss 5277 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ↾ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3157 ↾ cres 4665 Fun wfun 5252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-br 4034 df-opab 4095 df-rel 4670 df-cnv 4671 df-co 4672 df-res 4675 df-fun 5260 |
| This theorem is referenced by: fnssresb 5370 fnresi 5375 fores 5490 respreima 5690 resfunexg 5783 funfvima 5794 smores 6350 smores2 6352 frecfun 6453 residfi 7006 sbthlem7 7029 setsfun 12713 setsfun0 12714 |
| Copyright terms: Public domain | W3C validator |