ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funsn Unicode version

Theorem funsn 5342
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.)
Hypotheses
Ref Expression
funsn.1  |-  A  e. 
_V
funsn.2  |-  B  e. 
_V
Assertion
Ref Expression
funsn  |-  Fun  { <. A ,  B >. }

Proof of Theorem funsn
StepHypRef Expression
1 funsn.1 . 2  |-  A  e. 
_V
2 funsn.2 . 2  |-  B  e. 
_V
3 funsng 5340 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  Fun  { <. A ,  B >. } )
41, 2, 3mp2an 426 1  |-  Fun  { <. A ,  B >. }
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   _Vcvv 2777   {csn 3644   <.cop 3647   Fun wfun 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4179  ax-pow 4235  ax-pr 4270
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2779  df-un 3179  df-in 3181  df-ss 3188  df-pw 3629  df-sn 3650  df-pr 3651  df-op 3653  df-br 4061  df-opab 4123  df-id 4359  df-xp 4700  df-rel 4701  df-cnv 4702  df-co 4703  df-fun 5293
This theorem is referenced by:  funtp  5347  fun0  5352  funop  5788  fvsn  5804
  Copyright terms: Public domain W3C validator