| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > funinsn | Unicode version | ||
| Description: A function based on the
singleton of an ordered pair.  Unlike funsng 5304,
       this holds even if  | 
| Ref | Expression | 
|---|---|
| funinsn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inss2 3384 | 
. . . 4
 | |
| 2 | xpss 4771 | 
. . . 4
 | |
| 3 | 1, 2 | sstri 3192 | 
. . 3
 | 
| 4 | df-rel 4670 | 
. . 3
 | |
| 5 | 3, 4 | mpbir 146 | 
. 2
 | 
| 6 | elin 3346 | 
. . . . . . . . 9
 | |
| 7 | 6 | simplbi 274 | 
. . . . . . . 8
 | 
| 8 | elsni 3640 | 
. . . . . . . 8
 | |
| 9 | 7, 8 | syl 14 | 
. . . . . . 7
 | 
| 10 | vex 2766 | 
. . . . . . . 8
 | |
| 11 | vex 2766 | 
. . . . . . . 8
 | |
| 12 | 10, 11 | opth 4270 | 
. . . . . . 7
 | 
| 13 | 9, 12 | sylib 122 | 
. . . . . 6
 | 
| 14 | 13 | simprd 114 | 
. . . . 5
 | 
| 15 | elin 3346 | 
. . . . . . . . 9
 | |
| 16 | 15 | simplbi 274 | 
. . . . . . . 8
 | 
| 17 | elsni 3640 | 
. . . . . . . 8
 | |
| 18 | 16, 17 | syl 14 | 
. . . . . . 7
 | 
| 19 | vex 2766 | 
. . . . . . . 8
 | |
| 20 | 10, 19 | opth 4270 | 
. . . . . . 7
 | 
| 21 | 18, 20 | sylib 122 | 
. . . . . 6
 | 
| 22 | 21 | simprd 114 | 
. . . . 5
 | 
| 23 | eqtr3 2216 | 
. . . . 5
 | |
| 24 | 14, 22, 23 | syl2an 289 | 
. . . 4
 | 
| 25 | 24 | gen2 1464 | 
. . 3
 | 
| 26 | 25 | ax-gen 1463 | 
. 2
 | 
| 27 | dffun4 5269 | 
. 2
 | |
| 28 | 5, 26, 27 | mpbir2an 944 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-fun 5260 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |