Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funinsn | Unicode version |
Description: A function based on the singleton of an ordered pair. Unlike funsng 5234, this holds even if or is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.) |
Ref | Expression |
---|---|
funinsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 3343 | . . . 4 | |
2 | xpss 4712 | . . . 4 | |
3 | 1, 2 | sstri 3151 | . . 3 |
4 | df-rel 4611 | . . 3 | |
5 | 3, 4 | mpbir 145 | . 2 |
6 | elin 3305 | . . . . . . . . 9 | |
7 | 6 | simplbi 272 | . . . . . . . 8 |
8 | elsni 3594 | . . . . . . . 8 | |
9 | 7, 8 | syl 14 | . . . . . . 7 |
10 | vex 2729 | . . . . . . . 8 | |
11 | vex 2729 | . . . . . . . 8 | |
12 | 10, 11 | opth 4215 | . . . . . . 7 |
13 | 9, 12 | sylib 121 | . . . . . 6 |
14 | 13 | simprd 113 | . . . . 5 |
15 | elin 3305 | . . . . . . . . 9 | |
16 | 15 | simplbi 272 | . . . . . . . 8 |
17 | elsni 3594 | . . . . . . . 8 | |
18 | 16, 17 | syl 14 | . . . . . . 7 |
19 | vex 2729 | . . . . . . . 8 | |
20 | 10, 19 | opth 4215 | . . . . . . 7 |
21 | 18, 20 | sylib 121 | . . . . . 6 |
22 | 21 | simprd 113 | . . . . 5 |
23 | eqtr3 2185 | . . . . 5 | |
24 | 14, 22, 23 | syl2an 287 | . . . 4 |
25 | 24 | gen2 1438 | . . 3 |
26 | 25 | ax-gen 1437 | . 2 |
27 | dffun4 5199 | . 2 | |
28 | 5, 26, 27 | mpbir2an 932 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wceq 1343 wcel 2136 cvv 2726 cin 3115 wss 3116 csn 3576 cop 3579 cxp 4602 wrel 4609 wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-fun 5190 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |