Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funinsn | Unicode version |
Description: A function based on the singleton of an ordered pair. Unlike funsng 5244, this holds even if or is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.) |
Ref | Expression |
---|---|
funinsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 3348 | . . . 4 | |
2 | xpss 4719 | . . . 4 | |
3 | 1, 2 | sstri 3156 | . . 3 |
4 | df-rel 4618 | . . 3 | |
5 | 3, 4 | mpbir 145 | . 2 |
6 | elin 3310 | . . . . . . . . 9 | |
7 | 6 | simplbi 272 | . . . . . . . 8 |
8 | elsni 3601 | . . . . . . . 8 | |
9 | 7, 8 | syl 14 | . . . . . . 7 |
10 | vex 2733 | . . . . . . . 8 | |
11 | vex 2733 | . . . . . . . 8 | |
12 | 10, 11 | opth 4222 | . . . . . . 7 |
13 | 9, 12 | sylib 121 | . . . . . 6 |
14 | 13 | simprd 113 | . . . . 5 |
15 | elin 3310 | . . . . . . . . 9 | |
16 | 15 | simplbi 272 | . . . . . . . 8 |
17 | elsni 3601 | . . . . . . . 8 | |
18 | 16, 17 | syl 14 | . . . . . . 7 |
19 | vex 2733 | . . . . . . . 8 | |
20 | 10, 19 | opth 4222 | . . . . . . 7 |
21 | 18, 20 | sylib 121 | . . . . . 6 |
22 | 21 | simprd 113 | . . . . 5 |
23 | eqtr3 2190 | . . . . 5 | |
24 | 14, 22, 23 | syl2an 287 | . . . 4 |
25 | 24 | gen2 1443 | . . 3 |
26 | 25 | ax-gen 1442 | . 2 |
27 | dffun4 5209 | . 2 | |
28 | 5, 26, 27 | mpbir2an 937 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wceq 1348 wcel 2141 cvv 2730 cin 3120 wss 3121 csn 3583 cop 3586 cxp 4609 wrel 4616 wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-fun 5200 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |