Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funinsn | Unicode version |
Description: A function based on the singleton of an ordered pair. Unlike funsng 5209, this holds even if or is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.) |
Ref | Expression |
---|---|
funinsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 3324 | . . . 4 | |
2 | xpss 4687 | . . . 4 | |
3 | 1, 2 | sstri 3133 | . . 3 |
4 | df-rel 4586 | . . 3 | |
5 | 3, 4 | mpbir 145 | . 2 |
6 | elin 3286 | . . . . . . . . 9 | |
7 | 6 | simplbi 272 | . . . . . . . 8 |
8 | elsni 3574 | . . . . . . . 8 | |
9 | 7, 8 | syl 14 | . . . . . . 7 |
10 | vex 2712 | . . . . . . . 8 | |
11 | vex 2712 | . . . . . . . 8 | |
12 | 10, 11 | opth 4192 | . . . . . . 7 |
13 | 9, 12 | sylib 121 | . . . . . 6 |
14 | 13 | simprd 113 | . . . . 5 |
15 | elin 3286 | . . . . . . . . 9 | |
16 | 15 | simplbi 272 | . . . . . . . 8 |
17 | elsni 3574 | . . . . . . . 8 | |
18 | 16, 17 | syl 14 | . . . . . . 7 |
19 | vex 2712 | . . . . . . . 8 | |
20 | 10, 19 | opth 4192 | . . . . . . 7 |
21 | 18, 20 | sylib 121 | . . . . . 6 |
22 | 21 | simprd 113 | . . . . 5 |
23 | eqtr3 2174 | . . . . 5 | |
24 | 14, 22, 23 | syl2an 287 | . . . 4 |
25 | 24 | gen2 1427 | . . 3 |
26 | 25 | ax-gen 1426 | . 2 |
27 | dffun4 5174 | . 2 | |
28 | 5, 26, 27 | mpbir2an 927 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1330 wceq 1332 wcel 2125 cvv 2709 cin 3097 wss 3098 csn 3556 cop 3559 cxp 4577 wrel 4584 wfun 5157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-fun 5165 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |