ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funinsn Unicode version

Theorem funinsn 5180
Description: A function based on the singleton of an ordered pair. Unlike funsng 5177, this holds even if  A or  B is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.)
Assertion
Ref Expression
funinsn  |-  Fun  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )

Proof of Theorem funinsn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3302 . . . 4  |-  ( {
<. A ,  B >. }  i^i  ( V  X.  W ) )  C_  ( V  X.  W
)
2 xpss 4655 . . . 4  |-  ( V  X.  W )  C_  ( _V  X.  _V )
31, 2sstri 3111 . . 3  |-  ( {
<. A ,  B >. }  i^i  ( V  X.  W ) )  C_  ( _V  X.  _V )
4 df-rel 4554 . . 3  |-  ( Rel  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  <-> 
( { <. A ,  B >. }  i^i  ( V  X.  W ) ) 
C_  ( _V  X.  _V ) )
53, 4mpbir 145 . 2  |-  Rel  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )
6 elin 3264 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  <-> 
( <. x ,  y
>.  e.  { <. A ,  B >. }  /\  <. x ,  y >.  e.  ( V  X.  W ) ) )
76simplbi 272 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  <. x ,  y
>.  e.  { <. A ,  B >. } )
8 elsni 3550 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  { <. A ,  B >. }  ->  <. x ,  y >.  =  <. A ,  B >. )
97, 8syl 14 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  <. x ,  y
>.  =  <. A ,  B >. )
10 vex 2692 . . . . . . . 8  |-  x  e. 
_V
11 vex 2692 . . . . . . . 8  |-  y  e. 
_V
1210, 11opth 4167 . . . . . . 7  |-  ( <.
x ,  y >.  =  <. A ,  B >.  <-> 
( x  =  A  /\  y  =  B ) )
139, 12sylib 121 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  ( x  =  A  /\  y  =  B ) )
1413simprd 113 . . . . 5  |-  ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  y  =  B )
15 elin 3264 . . . . . . . . 9  |-  ( <.
x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  <-> 
( <. x ,  z
>.  e.  { <. A ,  B >. }  /\  <. x ,  z >.  e.  ( V  X.  W ) ) )
1615simplbi 272 . . . . . . . 8  |-  ( <.
x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  <. x ,  z
>.  e.  { <. A ,  B >. } )
17 elsni 3550 . . . . . . . 8  |-  ( <.
x ,  z >.  e.  { <. A ,  B >. }  ->  <. x ,  z >.  =  <. A ,  B >. )
1816, 17syl 14 . . . . . . 7  |-  ( <.
x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  <. x ,  z
>.  =  <. A ,  B >. )
19 vex 2692 . . . . . . . 8  |-  z  e. 
_V
2010, 19opth 4167 . . . . . . 7  |-  ( <.
x ,  z >.  =  <. A ,  B >.  <-> 
( x  =  A  /\  z  =  B ) )
2118, 20sylib 121 . . . . . 6  |-  ( <.
x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  ( x  =  A  /\  z  =  B ) )
2221simprd 113 . . . . 5  |-  ( <.
x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  z  =  B )
23 eqtr3 2160 . . . . 5  |-  ( ( y  =  B  /\  z  =  B )  ->  y  =  z )
2414, 22, 23syl2an 287 . . . 4  |-  ( (
<. x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  /\  <. x ,  z
>.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W
) ) )  -> 
y  =  z )
2524gen2 1427 . . 3  |-  A. y A. z ( ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  /\  <. x ,  z
>.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W
) ) )  -> 
y  =  z )
2625ax-gen 1426 . 2  |-  A. x A. y A. z ( ( <. x ,  y
>.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W
) )  /\  <. x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) ) )  ->  y  =  z )
27 dffun4 5142 . 2  |-  ( Fun  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  <-> 
( Rel  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  /\  <. x ,  z
>.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W
) ) )  -> 
y  =  z ) ) )
285, 26, 27mpbir2an 927 1  |-  Fun  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1330    = wceq 1332    e. wcel 1481   _Vcvv 2689    i^i cin 3075    C_ wss 3076   {csn 3532   <.cop 3535    X. cxp 4545   Rel wrel 4552   Fun wfun 5125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-fun 5133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator