ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funinsn Unicode version

Theorem funinsn 5323
Description: A function based on the singleton of an ordered pair. Unlike funsng 5320, this holds even if  A or  B is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.)
Assertion
Ref Expression
funinsn  |-  Fun  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )

Proof of Theorem funinsn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3394 . . . 4  |-  ( {
<. A ,  B >. }  i^i  ( V  X.  W ) )  C_  ( V  X.  W
)
2 xpss 4783 . . . 4  |-  ( V  X.  W )  C_  ( _V  X.  _V )
31, 2sstri 3202 . . 3  |-  ( {
<. A ,  B >. }  i^i  ( V  X.  W ) )  C_  ( _V  X.  _V )
4 df-rel 4682 . . 3  |-  ( Rel  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  <-> 
( { <. A ,  B >. }  i^i  ( V  X.  W ) ) 
C_  ( _V  X.  _V ) )
53, 4mpbir 146 . 2  |-  Rel  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )
6 elin 3356 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  <-> 
( <. x ,  y
>.  e.  { <. A ,  B >. }  /\  <. x ,  y >.  e.  ( V  X.  W ) ) )
76simplbi 274 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  <. x ,  y
>.  e.  { <. A ,  B >. } )
8 elsni 3651 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  { <. A ,  B >. }  ->  <. x ,  y >.  =  <. A ,  B >. )
97, 8syl 14 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  <. x ,  y
>.  =  <. A ,  B >. )
10 vex 2775 . . . . . . . 8  |-  x  e. 
_V
11 vex 2775 . . . . . . . 8  |-  y  e. 
_V
1210, 11opth 4281 . . . . . . 7  |-  ( <.
x ,  y >.  =  <. A ,  B >.  <-> 
( x  =  A  /\  y  =  B ) )
139, 12sylib 122 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  ( x  =  A  /\  y  =  B ) )
1413simprd 114 . . . . 5  |-  ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  y  =  B )
15 elin 3356 . . . . . . . . 9  |-  ( <.
x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  <-> 
( <. x ,  z
>.  e.  { <. A ,  B >. }  /\  <. x ,  z >.  e.  ( V  X.  W ) ) )
1615simplbi 274 . . . . . . . 8  |-  ( <.
x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  <. x ,  z
>.  e.  { <. A ,  B >. } )
17 elsni 3651 . . . . . . . 8  |-  ( <.
x ,  z >.  e.  { <. A ,  B >. }  ->  <. x ,  z >.  =  <. A ,  B >. )
1816, 17syl 14 . . . . . . 7  |-  ( <.
x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  <. x ,  z
>.  =  <. A ,  B >. )
19 vex 2775 . . . . . . . 8  |-  z  e. 
_V
2010, 19opth 4281 . . . . . . 7  |-  ( <.
x ,  z >.  =  <. A ,  B >.  <-> 
( x  =  A  /\  z  =  B ) )
2118, 20sylib 122 . . . . . 6  |-  ( <.
x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  ( x  =  A  /\  z  =  B ) )
2221simprd 114 . . . . 5  |-  ( <.
x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  z  =  B )
23 eqtr3 2225 . . . . 5  |-  ( ( y  =  B  /\  z  =  B )  ->  y  =  z )
2414, 22, 23syl2an 289 . . . 4  |-  ( (
<. x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  /\  <. x ,  z
>.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W
) ) )  -> 
y  =  z )
2524gen2 1473 . . 3  |-  A. y A. z ( ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  /\  <. x ,  z
>.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W
) ) )  -> 
y  =  z )
2625ax-gen 1472 . 2  |-  A. x A. y A. z ( ( <. x ,  y
>.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W
) )  /\  <. x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) ) )  ->  y  =  z )
27 dffun4 5282 . 2  |-  ( Fun  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  <-> 
( Rel  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  /\  <. x ,  z
>.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W
) ) )  -> 
y  =  z ) ) )
285, 26, 27mpbir2an 945 1  |-  Fun  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373    e. wcel 2176   _Vcvv 2772    i^i cin 3165    C_ wss 3166   {csn 3633   <.cop 3636    X. cxp 4673   Rel wrel 4680   Fun wfun 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-fun 5273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator