ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsn Unicode version

Theorem fvsn 5691
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.)
Hypotheses
Ref Expression
fvsn.1  |-  A  e. 
_V
fvsn.2  |-  B  e. 
_V
Assertion
Ref Expression
fvsn  |-  ( {
<. A ,  B >. } `
 A )  =  B

Proof of Theorem fvsn
StepHypRef Expression
1 fvsn.1 . . 3  |-  A  e. 
_V
2 fvsn.2 . . 3  |-  B  e. 
_V
31, 2funsn 5246 . 2  |-  Fun  { <. A ,  B >. }
41, 2opex 4214 . . 3  |-  <. A ,  B >.  e.  _V
54snid 3614 . 2  |-  <. A ,  B >.  e.  { <. A ,  B >. }
6 funopfv 5536 . 2  |-  ( Fun 
{ <. A ,  B >. }  ->  ( <. A ,  B >.  e.  { <. A ,  B >. }  ->  ( { <. A ,  B >. } `  A )  =  B ) )
73, 5, 6mp2 16 1  |-  ( {
<. A ,  B >. } `
 A )  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   _Vcvv 2730   {csn 3583   <.cop 3586   Fun wfun 5192   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206
This theorem is referenced by:  fvsng  5692  fvsnun1  5693  fvpr1  5700  elixpsn  6713  mapsnen  6789  ac6sfi  6876
  Copyright terms: Public domain W3C validator