ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsn Unicode version

Theorem fvsn 5757
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.)
Hypotheses
Ref Expression
fvsn.1  |-  A  e. 
_V
fvsn.2  |-  B  e. 
_V
Assertion
Ref Expression
fvsn  |-  ( {
<. A ,  B >. } `
 A )  =  B

Proof of Theorem fvsn
StepHypRef Expression
1 fvsn.1 . . 3  |-  A  e. 
_V
2 fvsn.2 . . 3  |-  B  e. 
_V
31, 2funsn 5306 . 2  |-  Fun  { <. A ,  B >. }
41, 2opex 4262 . . 3  |-  <. A ,  B >.  e.  _V
54snid 3653 . 2  |-  <. A ,  B >.  e.  { <. A ,  B >. }
6 funopfv 5600 . 2  |-  ( Fun 
{ <. A ,  B >. }  ->  ( <. A ,  B >.  e.  { <. A ,  B >. }  ->  ( { <. A ,  B >. } `  A )  =  B ) )
73, 5, 6mp2 16 1  |-  ( {
<. A ,  B >. } `
 A )  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3622   <.cop 3625   Fun wfun 5252   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266
This theorem is referenced by:  fvsng  5758  fvsnun1  5759  fvpr1  5766  elixpsn  6794  mapsnen  6870  ac6sfi  6959
  Copyright terms: Public domain W3C validator