| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funsn | GIF version | ||
| Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| funsn.1 | ⊢ 𝐴 ∈ V |
| funsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| funsn | ⊢ Fun {〈𝐴, 𝐵〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | funsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | funsng 5340 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → Fun {〈𝐴, 𝐵〉}) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ Fun {〈𝐴, 𝐵〉} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2178 Vcvv 2777 {csn 3644 〈cop 3647 Fun wfun 5285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4179 ax-pow 4235 ax-pr 4270 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2779 df-un 3179 df-in 3181 df-ss 3188 df-pw 3629 df-sn 3650 df-pr 3651 df-op 3653 df-br 4061 df-opab 4123 df-id 4359 df-xp 4700 df-rel 4701 df-cnv 4702 df-co 4703 df-fun 5293 |
| This theorem is referenced by: funtp 5347 fun0 5352 funop 5788 fvsn 5804 |
| Copyright terms: Public domain | W3C validator |