ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funsng Unicode version

Theorem funsng 5339
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.)
Assertion
Ref Expression
funsng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  Fun  { <. A ,  B >. } )

Proof of Theorem funsng
StepHypRef Expression
1 funcnvsn 5338 . 2  |-  Fun  `' { <. B ,  A >. }
2 cnvsng 5187 . . . 4  |-  ( ( B  e.  W  /\  A  e.  V )  ->  `' { <. B ,  A >. }  =  { <. A ,  B >. } )
32ancoms 268 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  `' { <. B ,  A >. }  =  { <. A ,  B >. } )
43funeqd 5312 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Fun  `' { <. B ,  A >. }  <->  Fun  { <. A ,  B >. } ) )
51, 4mpbii 148 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  Fun  { <. A ,  B >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   {csn 3643   <.cop 3646   `'ccnv 4692   Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-fun 5292
This theorem is referenced by:  fnsng  5340  funsn  5341  funprg  5343  funtpg  5344  setsfun  12982  setsfun0  12983  strle1g  13053  1strbas  13064
  Copyright terms: Public domain W3C validator