ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funsng Unicode version

Theorem funsng 5300
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.)
Assertion
Ref Expression
funsng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  Fun  { <. A ,  B >. } )

Proof of Theorem funsng
StepHypRef Expression
1 funcnvsn 5299 . 2  |-  Fun  `' { <. B ,  A >. }
2 cnvsng 5151 . . . 4  |-  ( ( B  e.  W  /\  A  e.  V )  ->  `' { <. B ,  A >. }  =  { <. A ,  B >. } )
32ancoms 268 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  `' { <. B ,  A >. }  =  { <. A ,  B >. } )
43funeqd 5276 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Fun  `' { <. B ,  A >. }  <->  Fun  { <. A ,  B >. } ) )
51, 4mpbii 148 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  Fun  { <. A ,  B >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {csn 3618   <.cop 3621   `'ccnv 4658   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-fun 5256
This theorem is referenced by:  fnsng  5301  funsn  5302  funprg  5304  funtpg  5305  setsfun  12653  setsfun0  12654  strle1g  12724  1strbas  12735
  Copyright terms: Public domain W3C validator