ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvco4 Unicode version

Theorem fvco4 5568
Description: Value of a composition. (Contributed by BJ, 7-Jul-2022.)
Assertion
Ref Expression
fvco4  |-  ( ( ( K : A --> X  /\  ( H  o.  K )  =  F )  /\  ( u  e.  A  /\  x  =  ( K `  u ) ) )  ->  ( H `  x )  =  ( F `  u ) )

Proof of Theorem fvco4
StepHypRef Expression
1 fvco3 5567 . . 3  |-  ( ( K : A --> X  /\  u  e.  A )  ->  ( ( H  o.  K ) `  u
)  =  ( H `
 ( K `  u ) ) )
21ad2ant2r 506 . 2  |-  ( ( ( K : A --> X  /\  ( H  o.  K )  =  F )  /\  ( u  e.  A  /\  x  =  ( K `  u ) ) )  ->  ( ( H  o.  K ) `  u )  =  ( H `  ( K `
 u ) ) )
3 simplr 525 . . . 4  |-  ( ( ( K : A --> X  /\  ( H  o.  K )  =  F )  /\  ( u  e.  A  /\  x  =  ( K `  u ) ) )  ->  ( H  o.  K )  =  F )
43eqcomd 2176 . . 3  |-  ( ( ( K : A --> X  /\  ( H  o.  K )  =  F )  /\  ( u  e.  A  /\  x  =  ( K `  u ) ) )  ->  F  =  ( H  o.  K ) )
54fveq1d 5498 . 2  |-  ( ( ( K : A --> X  /\  ( H  o.  K )  =  F )  /\  ( u  e.  A  /\  x  =  ( K `  u ) ) )  ->  ( F `  u )  =  ( ( H  o.  K
) `  u )
)
6 fveq2 5496 . . 3  |-  ( x  =  ( K `  u )  ->  ( H `  x )  =  ( H `  ( K `  u ) ) )
76ad2antll 488 . 2  |-  ( ( ( K : A --> X  /\  ( H  o.  K )  =  F )  /\  ( u  e.  A  /\  x  =  ( K `  u ) ) )  ->  ( H `  x )  =  ( H `  ( K `
 u ) ) )
82, 5, 73eqtr4rd 2214 1  |-  ( ( ( K : A --> X  /\  ( H  o.  K )  =  F )  /\  ( u  e.  A  /\  x  =  ( K `  u ) ) )  ->  ( H `  x )  =  ( F `  u ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    o. ccom 4615   -->wf 5194   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator