ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvco4 Unicode version

Theorem fvco4 5580
Description: Value of a composition. (Contributed by BJ, 7-Jul-2022.)
Assertion
Ref Expression
fvco4  |-  ( ( ( K : A --> X  /\  ( H  o.  K )  =  F )  /\  ( u  e.  A  /\  x  =  ( K `  u ) ) )  ->  ( H `  x )  =  ( F `  u ) )

Proof of Theorem fvco4
StepHypRef Expression
1 fvco3 5579 . . 3  |-  ( ( K : A --> X  /\  u  e.  A )  ->  ( ( H  o.  K ) `  u
)  =  ( H `
 ( K `  u ) ) )
21ad2ant2r 509 . 2  |-  ( ( ( K : A --> X  /\  ( H  o.  K )  =  F )  /\  ( u  e.  A  /\  x  =  ( K `  u ) ) )  ->  ( ( H  o.  K ) `  u )  =  ( H `  ( K `
 u ) ) )
3 simplr 528 . . . 4  |-  ( ( ( K : A --> X  /\  ( H  o.  K )  =  F )  /\  ( u  e.  A  /\  x  =  ( K `  u ) ) )  ->  ( H  o.  K )  =  F )
43eqcomd 2181 . . 3  |-  ( ( ( K : A --> X  /\  ( H  o.  K )  =  F )  /\  ( u  e.  A  /\  x  =  ( K `  u ) ) )  ->  F  =  ( H  o.  K ) )
54fveq1d 5509 . 2  |-  ( ( ( K : A --> X  /\  ( H  o.  K )  =  F )  /\  ( u  e.  A  /\  x  =  ( K `  u ) ) )  ->  ( F `  u )  =  ( ( H  o.  K
) `  u )
)
6 fveq2 5507 . . 3  |-  ( x  =  ( K `  u )  ->  ( H `  x )  =  ( H `  ( K `  u ) ) )
76ad2antll 491 . 2  |-  ( ( ( K : A --> X  /\  ( H  o.  K )  =  F )  /\  ( u  e.  A  /\  x  =  ( K `  u ) ) )  ->  ( H `  x )  =  ( H `  ( K `
 u ) ) )
82, 5, 73eqtr4rd 2219 1  |-  ( ( ( K : A --> X  /\  ( H  o.  K )  =  F )  /\  ( u  e.  A  /\  x  =  ( K `  u ) ) )  ->  ( H `  x )  =  ( F `  u ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146    o. ccom 4624   -->wf 5204   ` cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator