ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvco4 GIF version

Theorem fvco4 5629
Description: Value of a composition. (Contributed by BJ, 7-Jul-2022.)
Assertion
Ref Expression
fvco4 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐻𝑥) = (𝐹𝑢))

Proof of Theorem fvco4
StepHypRef Expression
1 fvco3 5628 . . 3 ((𝐾:𝐴𝑋𝑢𝐴) → ((𝐻𝐾)‘𝑢) = (𝐻‘(𝐾𝑢)))
21ad2ant2r 509 . 2 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → ((𝐻𝐾)‘𝑢) = (𝐻‘(𝐾𝑢)))
3 simplr 528 . . . 4 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐻𝐾) = 𝐹)
43eqcomd 2199 . . 3 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → 𝐹 = (𝐻𝐾))
54fveq1d 5556 . 2 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐹𝑢) = ((𝐻𝐾)‘𝑢))
6 fveq2 5554 . . 3 (𝑥 = (𝐾𝑢) → (𝐻𝑥) = (𝐻‘(𝐾𝑢)))
76ad2antll 491 . 2 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐻𝑥) = (𝐻‘(𝐾𝑢)))
82, 5, 73eqtr4rd 2237 1 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐻𝑥) = (𝐹𝑢))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  ccom 4663  wf 5250  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator