ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvco4 GIF version

Theorem fvco4 5558
Description: Value of a composition. (Contributed by BJ, 7-Jul-2022.)
Assertion
Ref Expression
fvco4 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐻𝑥) = (𝐹𝑢))

Proof of Theorem fvco4
StepHypRef Expression
1 fvco3 5557 . . 3 ((𝐾:𝐴𝑋𝑢𝐴) → ((𝐻𝐾)‘𝑢) = (𝐻‘(𝐾𝑢)))
21ad2ant2r 501 . 2 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → ((𝐻𝐾)‘𝑢) = (𝐻‘(𝐾𝑢)))
3 simplr 520 . . . 4 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐻𝐾) = 𝐹)
43eqcomd 2171 . . 3 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → 𝐹 = (𝐻𝐾))
54fveq1d 5488 . 2 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐹𝑢) = ((𝐻𝐾)‘𝑢))
6 fveq2 5486 . . 3 (𝑥 = (𝐾𝑢) → (𝐻𝑥) = (𝐻‘(𝐾𝑢)))
76ad2antll 483 . 2 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐻𝑥) = (𝐻‘(𝐾𝑢)))
82, 5, 73eqtr4rd 2209 1 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐻𝑥) = (𝐹𝑢))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  ccom 4608  wf 5184  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator