![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvco4 | GIF version |
Description: Value of a composition. (Contributed by BJ, 7-Jul-2022.) |
Ref | Expression |
---|---|
fvco4 | ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻‘𝑥) = (𝐹‘𝑢)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvco3 5628 | . . 3 ⊢ ((𝐾:𝐴⟶𝑋 ∧ 𝑢 ∈ 𝐴) → ((𝐻 ∘ 𝐾)‘𝑢) = (𝐻‘(𝐾‘𝑢))) | |
2 | 1 | ad2ant2r 509 | . 2 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → ((𝐻 ∘ 𝐾)‘𝑢) = (𝐻‘(𝐾‘𝑢))) |
3 | simplr 528 | . . . 4 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻 ∘ 𝐾) = 𝐹) | |
4 | 3 | eqcomd 2199 | . . 3 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → 𝐹 = (𝐻 ∘ 𝐾)) |
5 | 4 | fveq1d 5556 | . 2 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐹‘𝑢) = ((𝐻 ∘ 𝐾)‘𝑢)) |
6 | fveq2 5554 | . . 3 ⊢ (𝑥 = (𝐾‘𝑢) → (𝐻‘𝑥) = (𝐻‘(𝐾‘𝑢))) | |
7 | 6 | ad2antll 491 | . 2 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻‘𝑥) = (𝐻‘(𝐾‘𝑢))) |
8 | 2, 5, 7 | 3eqtr4rd 2237 | 1 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻‘𝑥) = (𝐹‘𝑢)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∘ ccom 4663 ⟶wf 5250 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |