ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvco4 GIF version

Theorem fvco4 5705
Description: Value of a composition. (Contributed by BJ, 7-Jul-2022.)
Assertion
Ref Expression
fvco4 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐻𝑥) = (𝐹𝑢))

Proof of Theorem fvco4
StepHypRef Expression
1 fvco3 5704 . . 3 ((𝐾:𝐴𝑋𝑢𝐴) → ((𝐻𝐾)‘𝑢) = (𝐻‘(𝐾𝑢)))
21ad2ant2r 509 . 2 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → ((𝐻𝐾)‘𝑢) = (𝐻‘(𝐾𝑢)))
3 simplr 528 . . . 4 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐻𝐾) = 𝐹)
43eqcomd 2235 . . 3 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → 𝐹 = (𝐻𝐾))
54fveq1d 5628 . 2 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐹𝑢) = ((𝐻𝐾)‘𝑢))
6 fveq2 5626 . . 3 (𝑥 = (𝐾𝑢) → (𝐻𝑥) = (𝐻‘(𝐾𝑢)))
76ad2antll 491 . 2 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐻𝑥) = (𝐻‘(𝐾𝑢)))
82, 5, 73eqtr4rd 2273 1 (((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐻𝑥) = (𝐹𝑢))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  ccom 4722  wf 5313  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator