![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvco4 | GIF version |
Description: Value of a composition. (Contributed by BJ, 7-Jul-2022.) |
Ref | Expression |
---|---|
fvco4 | ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻‘𝑥) = (𝐹‘𝑢)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvco3 5446 | . . 3 ⊢ ((𝐾:𝐴⟶𝑋 ∧ 𝑢 ∈ 𝐴) → ((𝐻 ∘ 𝐾)‘𝑢) = (𝐻‘(𝐾‘𝑢))) | |
2 | 1 | ad2ant2r 498 | . 2 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → ((𝐻 ∘ 𝐾)‘𝑢) = (𝐻‘(𝐾‘𝑢))) |
3 | simplr 502 | . . . 4 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻 ∘ 𝐾) = 𝐹) | |
4 | 3 | eqcomd 2120 | . . 3 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → 𝐹 = (𝐻 ∘ 𝐾)) |
5 | 4 | fveq1d 5377 | . 2 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐹‘𝑢) = ((𝐻 ∘ 𝐾)‘𝑢)) |
6 | fveq2 5375 | . . 3 ⊢ (𝑥 = (𝐾‘𝑢) → (𝐻‘𝑥) = (𝐻‘(𝐾‘𝑢))) | |
7 | 6 | ad2antll 480 | . 2 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻‘𝑥) = (𝐻‘(𝐾‘𝑢))) |
8 | 2, 5, 7 | 3eqtr4rd 2158 | 1 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻‘𝑥) = (𝐹‘𝑢)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 ∘ ccom 4503 ⟶wf 5077 ‘cfv 5081 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-sbc 2879 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-fv 5089 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |