Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvco4 | GIF version |
Description: Value of a composition. (Contributed by BJ, 7-Jul-2022.) |
Ref | Expression |
---|---|
fvco4 | ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻‘𝑥) = (𝐹‘𝑢)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvco3 5532 | . . 3 ⊢ ((𝐾:𝐴⟶𝑋 ∧ 𝑢 ∈ 𝐴) → ((𝐻 ∘ 𝐾)‘𝑢) = (𝐻‘(𝐾‘𝑢))) | |
2 | 1 | ad2ant2r 501 | . 2 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → ((𝐻 ∘ 𝐾)‘𝑢) = (𝐻‘(𝐾‘𝑢))) |
3 | simplr 520 | . . . 4 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻 ∘ 𝐾) = 𝐹) | |
4 | 3 | eqcomd 2160 | . . 3 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → 𝐹 = (𝐻 ∘ 𝐾)) |
5 | 4 | fveq1d 5463 | . 2 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐹‘𝑢) = ((𝐻 ∘ 𝐾)‘𝑢)) |
6 | fveq2 5461 | . . 3 ⊢ (𝑥 = (𝐾‘𝑢) → (𝐻‘𝑥) = (𝐻‘(𝐾‘𝑢))) | |
7 | 6 | ad2antll 483 | . 2 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻‘𝑥) = (𝐻‘(𝐾‘𝑢))) |
8 | 2, 5, 7 | 3eqtr4rd 2198 | 1 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻‘𝑥) = (𝐹‘𝑢)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1332 ∈ wcel 2125 ∘ ccom 4583 ⟶wf 5159 ‘cfv 5163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-fv 5171 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |