Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvco4 | GIF version |
Description: Value of a composition. (Contributed by BJ, 7-Jul-2022.) |
Ref | Expression |
---|---|
fvco4 | ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻‘𝑥) = (𝐹‘𝑢)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvco3 5557 | . . 3 ⊢ ((𝐾:𝐴⟶𝑋 ∧ 𝑢 ∈ 𝐴) → ((𝐻 ∘ 𝐾)‘𝑢) = (𝐻‘(𝐾‘𝑢))) | |
2 | 1 | ad2ant2r 501 | . 2 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → ((𝐻 ∘ 𝐾)‘𝑢) = (𝐻‘(𝐾‘𝑢))) |
3 | simplr 520 | . . . 4 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻 ∘ 𝐾) = 𝐹) | |
4 | 3 | eqcomd 2171 | . . 3 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → 𝐹 = (𝐻 ∘ 𝐾)) |
5 | 4 | fveq1d 5488 | . 2 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐹‘𝑢) = ((𝐻 ∘ 𝐾)‘𝑢)) |
6 | fveq2 5486 | . . 3 ⊢ (𝑥 = (𝐾‘𝑢) → (𝐻‘𝑥) = (𝐻‘(𝐾‘𝑢))) | |
7 | 6 | ad2antll 483 | . 2 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻‘𝑥) = (𝐻‘(𝐾‘𝑢))) |
8 | 2, 5, 7 | 3eqtr4rd 2209 | 1 ⊢ (((𝐾:𝐴⟶𝑋 ∧ (𝐻 ∘ 𝐾) = 𝐹) ∧ (𝑢 ∈ 𝐴 ∧ 𝑥 = (𝐾‘𝑢))) → (𝐻‘𝑥) = (𝐹‘𝑢)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∘ ccom 4608 ⟶wf 5184 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |