ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvixp Unicode version

Theorem fvixp 6813
Description: Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
fvixp.1  |-  ( x  =  C  ->  B  =  D )
Assertion
Ref Expression
fvixp  |-  ( ( F  e.  X_ x  e.  A  B  /\  C  e.  A )  ->  ( F `  C
)  e.  D )
Distinct variable groups:    x, A    x, C    x, D    x, F
Allowed substitution hint:    B( x)

Proof of Theorem fvixp
StepHypRef Expression
1 elixp2 6812 . . 3  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
21simp3bi 1017 . 2  |-  ( F  e.  X_ x  e.  A  B  ->  A. x  e.  A  ( F `  x )  e.  B )
3 fveq2 5599 . . . 4  |-  ( x  =  C  ->  ( F `  x )  =  ( F `  C ) )
4 fvixp.1 . . . 4  |-  ( x  =  C  ->  B  =  D )
53, 4eleq12d 2278 . . 3  |-  ( x  =  C  ->  (
( F `  x
)  e.  B  <->  ( F `  C )  e.  D
) )
65rspccva 2883 . 2  |-  ( ( A. x  e.  A  ( F `  x )  e.  B  /\  C  e.  A )  ->  ( F `  C )  e.  D )
72, 6sylan 283 1  |-  ( ( F  e.  X_ x  e.  A  B  /\  C  e.  A )  ->  ( F `  C
)  e.  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   _Vcvv 2776    Fn wfn 5285   ` cfv 5290   X_cixp 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ixp 6809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator