Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvixp | Unicode version |
Description: Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
Ref | Expression |
---|---|
fvixp.1 |
Ref | Expression |
---|---|
fvixp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elixp2 6692 | . . 3 | |
2 | 1 | simp3bi 1014 | . 2 |
3 | fveq2 5507 | . . . 4 | |
4 | fvixp.1 | . . . 4 | |
5 | 3, 4 | eleq12d 2246 | . . 3 |
6 | 5 | rspccva 2838 | . 2 |
7 | 2, 6 | sylan 283 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wcel 2146 wral 2453 cvv 2735 wfn 5203 cfv 5208 cixp 6688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ixp 6689 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |