ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvixp Unicode version

Theorem fvixp 6703
Description: Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
fvixp.1  |-  ( x  =  C  ->  B  =  D )
Assertion
Ref Expression
fvixp  |-  ( ( F  e.  X_ x  e.  A  B  /\  C  e.  A )  ->  ( F `  C
)  e.  D )
Distinct variable groups:    x, A    x, C    x, D    x, F
Allowed substitution hint:    B( x)

Proof of Theorem fvixp
StepHypRef Expression
1 elixp2 6702 . . 3  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
21simp3bi 1014 . 2  |-  ( F  e.  X_ x  e.  A  B  ->  A. x  e.  A  ( F `  x )  e.  B )
3 fveq2 5516 . . . 4  |-  ( x  =  C  ->  ( F `  x )  =  ( F `  C ) )
4 fvixp.1 . . . 4  |-  ( x  =  C  ->  B  =  D )
53, 4eleq12d 2248 . . 3  |-  ( x  =  C  ->  (
( F `  x
)  e.  B  <->  ( F `  C )  e.  D
) )
65rspccva 2841 . 2  |-  ( ( A. x  e.  A  ( F `  x )  e.  B  /\  C  e.  A )  ->  ( F `  C )  e.  D )
72, 6sylan 283 1  |-  ( ( F  e.  X_ x  e.  A  B  /\  C  e.  A )  ->  ( F `  C
)  e.  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2738    Fn wfn 5212   ` cfv 5217   X_cixp 6698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-ixp 6699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator