ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpfn Unicode version

Theorem ixpfn 6763
Description: A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.)
Assertion
Ref Expression
ixpfn  |-  ( F  e.  X_ x  e.  A  B  ->  F  Fn  A
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem ixpfn
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fneq1 5346 . 2  |-  ( f  =  F  ->  (
f  Fn  A  <->  F  Fn  A ) )
2 elixp2 6761 . . 3  |-  ( f  e.  X_ x  e.  A  B 
<->  ( f  e.  _V  /\  f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B ) )
32simp2bi 1015 . 2  |-  ( f  e.  X_ x  e.  A  B  ->  f  Fn  A
)
41, 3vtoclga 2830 1  |-  ( F  e.  X_ x  e.  A  B  ->  F  Fn  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   A.wral 2475   _Vcvv 2763    Fn wfn 5253   ` cfv 5258   X_cixp 6757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ixp 6758
This theorem is referenced by:  ixpprc  6778  ixpssmap2g  6786  ixpssmapg  6787  xpsff1o  12992
  Copyright terms: Public domain W3C validator