ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpfn Unicode version

Theorem ixpfn 6682
Description: A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.)
Assertion
Ref Expression
ixpfn  |-  ( F  e.  X_ x  e.  A  B  ->  F  Fn  A
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem ixpfn
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fneq1 5286 . 2  |-  ( f  =  F  ->  (
f  Fn  A  <->  F  Fn  A ) )
2 elixp2 6680 . . 3  |-  ( f  e.  X_ x  e.  A  B 
<->  ( f  e.  _V  /\  f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B ) )
32simp2bi 1008 . 2  |-  ( f  e.  X_ x  e.  A  B  ->  f  Fn  A
)
41, 3vtoclga 2796 1  |-  ( F  e.  X_ x  e.  A  B  ->  F  Fn  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   A.wral 2448   _Vcvv 2730    Fn wfn 5193   ` cfv 5198   X_cixp 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ixp 6677
This theorem is referenced by:  ixpprc  6697  ixpssmap2g  6705  ixpssmapg  6706
  Copyright terms: Public domain W3C validator