![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvixp | GIF version |
Description: Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
Ref | Expression |
---|---|
fvixp.1 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
fvixp | ⊢ ((𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elixp2 6756 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
2 | 1 | simp3bi 1016 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
3 | fveq2 5554 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝐹‘𝑥) = (𝐹‘𝐶)) | |
4 | fvixp.1 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) | |
5 | 3, 4 | eleq12d 2264 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝐹‘𝑥) ∈ 𝐵 ↔ (𝐹‘𝐶) ∈ 𝐷)) |
6 | 5 | rspccva 2863 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐷) |
7 | 2, 6 | sylan 283 | 1 ⊢ ((𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 Vcvv 2760 Fn wfn 5249 ‘cfv 5254 Xcixp 6752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-ixp 6753 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |