ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmhm Unicode version

Theorem resmhm 13515
Description: Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypothesis
Ref Expression
resmhm.u  |-  U  =  ( Ss  X )
Assertion
Ref Expression
resmhm  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X )  e.  ( U MndHom  T ) )

Proof of Theorem resmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 13492 . . 3  |-  ( F  e.  ( S MndHom  T
)  ->  T  e.  Mnd )
2 resmhm.u . . . 4  |-  U  =  ( Ss  X )
32submmnd 13508 . . 3  |-  ( X  e.  (SubMnd `  S
)  ->  U  e.  Mnd )
41, 3anim12ci 339 . 2  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( U  e.  Mnd  /\  T  e. 
Mnd ) )
5 eqid 2229 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
6 eqid 2229 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
75, 6mhmf 13493 . . . . 5  |-  ( F  e.  ( S MndHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
85submss 13504 . . . . 5  |-  ( X  e.  (SubMnd `  S
)  ->  X  C_  ( Base `  S ) )
9 fssres 5500 . . . . 5  |-  ( ( F : ( Base `  S ) --> ( Base `  T )  /\  X  C_  ( Base `  S
) )  ->  ( F  |`  X ) : X --> ( Base `  T
) )
107, 8, 9syl2an 289 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X ) : X --> ( Base `  T )
)
112a1i 9 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  U  =  ( Ss  X ) )
12 eqidd 2230 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( Base `  S )  =  (
Base `  S )
)
13 submrcl 13499 . . . . . . 7  |-  ( X  e.  (SubMnd `  S
)  ->  S  e.  Mnd )
1413adantl 277 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  S  e.  Mnd )
158adantl 277 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  X  C_  ( Base `  S ) )
1611, 12, 14, 15ressbas2d 13096 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  X  =  ( Base `  U )
)
1716feq2d 5460 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) : X --> ( Base `  T
)  <->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
) )
1810, 17mpbid 147 . . 3  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
)
19 simpll 527 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  F  e.  ( S MndHom  T ) )
208ad2antlr 489 . . . . . . . 8  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  X  C_  ( Base `  S ) )
21 simprl 529 . . . . . . . 8  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  x  e.  X )
2220, 21sseldd 3225 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  x  e.  ( Base `  S )
)
23 simprr 531 . . . . . . . 8  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  y  e.  X )
2420, 23sseldd 3225 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  y  e.  ( Base `  S )
)
25 eqid 2229 . . . . . . . 8  |-  ( +g  `  S )  =  ( +g  `  S )
26 eqid 2229 . . . . . . . 8  |-  ( +g  `  T )  =  ( +g  `  T )
275, 25, 26mhmlin 13495 . . . . . . 7  |-  ( ( F  e.  ( S MndHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
2819, 22, 24, 27syl3anc 1271 . . . . . 6  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
2925submcl 13507 . . . . . . . . 9  |-  ( ( X  e.  (SubMnd `  S )  /\  x  e.  X  /\  y  e.  X )  ->  (
x ( +g  `  S
) y )  e.  X )
30293expb 1228 . . . . . . . 8  |-  ( ( X  e.  (SubMnd `  S )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
( +g  `  S ) y )  e.  X
)
3130adantll 476 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
( +g  `  S ) y )  e.  X
)
3231fvresd 5651 . . . . . 6  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( F `
 ( x ( +g  `  S ) y ) ) )
33 fvres 5650 . . . . . . . 8  |-  ( x  e.  X  ->  (
( F  |`  X ) `
 x )  =  ( F `  x
) )
34 fvres 5650 . . . . . . . 8  |-  ( y  e.  X  ->  (
( F  |`  X ) `
 y )  =  ( F `  y
) )
3533, 34oveqan12d 6019 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  =  ( ( F `  x
) ( +g  `  T
) ( F `  y ) ) )
3635adantl 277 . . . . . 6  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( (
( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) )  =  ( ( F `  x
) ( +g  `  T
) ( F `  y ) ) )
3728, 32, 363eqtr4d 2272 . . . . 5  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) ) )
3837ralrimivva 2612 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  A. x  e.  X  A. y  e.  X  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) ) )
392a1i 9 . . . . . . . . . 10  |-  ( X  e.  (SubMnd `  S
)  ->  U  =  ( Ss  X ) )
40 eqidd 2230 . . . . . . . . . 10  |-  ( X  e.  (SubMnd `  S
)  ->  ( +g  `  S )  =  ( +g  `  S ) )
41 id 19 . . . . . . . . . 10  |-  ( X  e.  (SubMnd `  S
)  ->  X  e.  (SubMnd `  S ) )
4239, 40, 41, 13ressplusgd 13157 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  S
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
4342adantl 277 . . . . . . . 8  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
4443oveqd 6017 . . . . . . 7  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( x
( +g  `  S ) y )  =  ( x ( +g  `  U
) y ) )
4544fveqeq2d 5634 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( (
( F  |`  X ) `
 ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  <->  ( ( F  |`  X ) `  ( x ( +g  `  U ) y ) )  =  ( ( ( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) ) ) )
4616, 45raleqbidv 2744 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( A. y  e.  X  (
( F  |`  X ) `
 ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  <->  A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) ) )
4716, 46raleqbidv 2744 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( A. x  e.  X  A. y  e.  X  (
( F  |`  X ) `
 ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  <->  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) ) )
4838, 47mpbid 147 . . 3  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) )
49 eqid 2229 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
5049subm0cl 13506 . . . . . 6  |-  ( X  e.  (SubMnd `  S
)  ->  ( 0g `  S )  e.  X
)
5150adantl 277 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( 0g `  S )  e.  X
)
5251fvresd 5651 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) `  ( 0g `  S ) )  =  ( F `
 ( 0g `  S ) ) )
532, 49subm0 13510 . . . . . 6  |-  ( X  e.  (SubMnd `  S
)  ->  ( 0g `  S )  =  ( 0g `  U ) )
5453adantl 277 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( 0g `  S )  =  ( 0g `  U ) )
5554fveq2d 5630 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) `  ( 0g `  S ) )  =  ( ( F  |`  X ) `  ( 0g `  U
) ) )
56 eqid 2229 . . . . . 6  |-  ( 0g
`  T )  =  ( 0g `  T
)
5749, 56mhm0 13496 . . . . 5  |-  ( F  e.  ( S MndHom  T
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
5857adantr 276 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
5952, 55, 583eqtr3d 2270 . . 3  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) `  ( 0g `  U ) )  =  ( 0g
`  T ) )
6018, 48, 593jca 1201 . 2  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) : ( Base `  U
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) )  /\  ( ( F  |`  X ) `  ( 0g `  U ) )  =  ( 0g `  T ) ) )
61 eqid 2229 . . 3  |-  ( Base `  U )  =  (
Base `  U )
62 eqid 2229 . . 3  |-  ( +g  `  U )  =  ( +g  `  U )
63 eqid 2229 . . 3  |-  ( 0g
`  U )  =  ( 0g `  U
)
6461, 6, 62, 26, 63, 56ismhm 13489 . 2  |-  ( ( F  |`  X )  e.  ( U MndHom  T )  <-> 
( ( U  e. 
Mnd  /\  T  e.  Mnd )  /\  (
( F  |`  X ) : ( Base `  U
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) )  /\  ( ( F  |`  X ) `  ( 0g `  U ) )  =  ( 0g `  T ) ) ) )
654, 60, 64sylanbrc 417 1  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X )  e.  ( U MndHom  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197    |` cres 4720   -->wf 5313   ` cfv 5317  (class class class)co 6000   Basecbs 13027   ↾s cress 13028   +g cplusg 13105   0gc0g 13284   Mndcmnd 13444   MndHom cmhm 13485  SubMndcsubmnd 13486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mhm 13487  df-submnd 13488
This theorem is referenced by:  resrhm  14206
  Copyright terms: Public domain W3C validator