ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmhm Unicode version

Theorem resmhm 13319
Description: Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypothesis
Ref Expression
resmhm.u  |-  U  =  ( Ss  X )
Assertion
Ref Expression
resmhm  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X )  e.  ( U MndHom  T ) )

Proof of Theorem resmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 13296 . . 3  |-  ( F  e.  ( S MndHom  T
)  ->  T  e.  Mnd )
2 resmhm.u . . . 4  |-  U  =  ( Ss  X )
32submmnd 13312 . . 3  |-  ( X  e.  (SubMnd `  S
)  ->  U  e.  Mnd )
41, 3anim12ci 339 . 2  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( U  e.  Mnd  /\  T  e. 
Mnd ) )
5 eqid 2205 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
6 eqid 2205 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
75, 6mhmf 13297 . . . . 5  |-  ( F  e.  ( S MndHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
85submss 13308 . . . . 5  |-  ( X  e.  (SubMnd `  S
)  ->  X  C_  ( Base `  S ) )
9 fssres 5451 . . . . 5  |-  ( ( F : ( Base `  S ) --> ( Base `  T )  /\  X  C_  ( Base `  S
) )  ->  ( F  |`  X ) : X --> ( Base `  T
) )
107, 8, 9syl2an 289 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X ) : X --> ( Base `  T )
)
112a1i 9 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  U  =  ( Ss  X ) )
12 eqidd 2206 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( Base `  S )  =  (
Base `  S )
)
13 submrcl 13303 . . . . . . 7  |-  ( X  e.  (SubMnd `  S
)  ->  S  e.  Mnd )
1413adantl 277 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  S  e.  Mnd )
158adantl 277 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  X  C_  ( Base `  S ) )
1611, 12, 14, 15ressbas2d 12900 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  X  =  ( Base `  U )
)
1716feq2d 5413 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) : X --> ( Base `  T
)  <->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
) )
1810, 17mpbid 147 . . 3  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
)
19 simpll 527 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  F  e.  ( S MndHom  T ) )
208ad2antlr 489 . . . . . . . 8  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  X  C_  ( Base `  S ) )
21 simprl 529 . . . . . . . 8  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  x  e.  X )
2220, 21sseldd 3194 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  x  e.  ( Base `  S )
)
23 simprr 531 . . . . . . . 8  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  y  e.  X )
2420, 23sseldd 3194 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  y  e.  ( Base `  S )
)
25 eqid 2205 . . . . . . . 8  |-  ( +g  `  S )  =  ( +g  `  S )
26 eqid 2205 . . . . . . . 8  |-  ( +g  `  T )  =  ( +g  `  T )
275, 25, 26mhmlin 13299 . . . . . . 7  |-  ( ( F  e.  ( S MndHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
2819, 22, 24, 27syl3anc 1250 . . . . . 6  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
2925submcl 13311 . . . . . . . . 9  |-  ( ( X  e.  (SubMnd `  S )  /\  x  e.  X  /\  y  e.  X )  ->  (
x ( +g  `  S
) y )  e.  X )
30293expb 1207 . . . . . . . 8  |-  ( ( X  e.  (SubMnd `  S )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
( +g  `  S ) y )  e.  X
)
3130adantll 476 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
( +g  `  S ) y )  e.  X
)
3231fvresd 5601 . . . . . 6  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( F `
 ( x ( +g  `  S ) y ) ) )
33 fvres 5600 . . . . . . . 8  |-  ( x  e.  X  ->  (
( F  |`  X ) `
 x )  =  ( F `  x
) )
34 fvres 5600 . . . . . . . 8  |-  ( y  e.  X  ->  (
( F  |`  X ) `
 y )  =  ( F `  y
) )
3533, 34oveqan12d 5963 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  =  ( ( F `  x
) ( +g  `  T
) ( F `  y ) ) )
3635adantl 277 . . . . . 6  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( (
( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) )  =  ( ( F `  x
) ( +g  `  T
) ( F `  y ) ) )
3728, 32, 363eqtr4d 2248 . . . . 5  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) ) )
3837ralrimivva 2588 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  A. x  e.  X  A. y  e.  X  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) ) )
392a1i 9 . . . . . . . . . 10  |-  ( X  e.  (SubMnd `  S
)  ->  U  =  ( Ss  X ) )
40 eqidd 2206 . . . . . . . . . 10  |-  ( X  e.  (SubMnd `  S
)  ->  ( +g  `  S )  =  ( +g  `  S ) )
41 id 19 . . . . . . . . . 10  |-  ( X  e.  (SubMnd `  S
)  ->  X  e.  (SubMnd `  S ) )
4239, 40, 41, 13ressplusgd 12961 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  S
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
4342adantl 277 . . . . . . . 8  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
4443oveqd 5961 . . . . . . 7  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( x
( +g  `  S ) y )  =  ( x ( +g  `  U
) y ) )
4544fveqeq2d 5584 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( (
( F  |`  X ) `
 ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  <->  ( ( F  |`  X ) `  ( x ( +g  `  U ) y ) )  =  ( ( ( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) ) ) )
4616, 45raleqbidv 2718 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( A. y  e.  X  (
( F  |`  X ) `
 ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  <->  A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) ) )
4716, 46raleqbidv 2718 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( A. x  e.  X  A. y  e.  X  (
( F  |`  X ) `
 ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  <->  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) ) )
4838, 47mpbid 147 . . 3  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) )
49 eqid 2205 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
5049subm0cl 13310 . . . . . 6  |-  ( X  e.  (SubMnd `  S
)  ->  ( 0g `  S )  e.  X
)
5150adantl 277 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( 0g `  S )  e.  X
)
5251fvresd 5601 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) `  ( 0g `  S ) )  =  ( F `
 ( 0g `  S ) ) )
532, 49subm0 13314 . . . . . 6  |-  ( X  e.  (SubMnd `  S
)  ->  ( 0g `  S )  =  ( 0g `  U ) )
5453adantl 277 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( 0g `  S )  =  ( 0g `  U ) )
5554fveq2d 5580 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) `  ( 0g `  S ) )  =  ( ( F  |`  X ) `  ( 0g `  U
) ) )
56 eqid 2205 . . . . . 6  |-  ( 0g
`  T )  =  ( 0g `  T
)
5749, 56mhm0 13300 . . . . 5  |-  ( F  e.  ( S MndHom  T
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
5857adantr 276 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
5952, 55, 583eqtr3d 2246 . . 3  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) `  ( 0g `  U ) )  =  ( 0g
`  T ) )
6018, 48, 593jca 1180 . 2  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) : ( Base `  U
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) )  /\  ( ( F  |`  X ) `  ( 0g `  U ) )  =  ( 0g `  T ) ) )
61 eqid 2205 . . 3  |-  ( Base `  U )  =  (
Base `  U )
62 eqid 2205 . . 3  |-  ( +g  `  U )  =  ( +g  `  U )
63 eqid 2205 . . 3  |-  ( 0g
`  U )  =  ( 0g `  U
)
6461, 6, 62, 26, 63, 56ismhm 13293 . 2  |-  ( ( F  |`  X )  e.  ( U MndHom  T )  <-> 
( ( U  e. 
Mnd  /\  T  e.  Mnd )  /\  (
( F  |`  X ) : ( Base `  U
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) )  /\  ( ( F  |`  X ) `  ( 0g `  U ) )  =  ( 0g `  T ) ) ) )
654, 60, 64sylanbrc 417 1  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X )  e.  ( U MndHom  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166    |` cres 4677   -->wf 5267   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   +g cplusg 12909   0gc0g 13088   Mndcmnd 13248   MndHom cmhm 13289  SubMndcsubmnd 13290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-mhm 13291  df-submnd 13292
This theorem is referenced by:  resrhm  14010
  Copyright terms: Public domain W3C validator