ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmhm Unicode version

Theorem resmhm 13059
Description: Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypothesis
Ref Expression
resmhm.u  |-  U  =  ( Ss  X )
Assertion
Ref Expression
resmhm  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X )  e.  ( U MndHom  T ) )

Proof of Theorem resmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 13036 . . 3  |-  ( F  e.  ( S MndHom  T
)  ->  T  e.  Mnd )
2 resmhm.u . . . 4  |-  U  =  ( Ss  X )
32submmnd 13052 . . 3  |-  ( X  e.  (SubMnd `  S
)  ->  U  e.  Mnd )
41, 3anim12ci 339 . 2  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( U  e.  Mnd  /\  T  e. 
Mnd ) )
5 eqid 2193 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
6 eqid 2193 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
75, 6mhmf 13037 . . . . 5  |-  ( F  e.  ( S MndHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
85submss 13048 . . . . 5  |-  ( X  e.  (SubMnd `  S
)  ->  X  C_  ( Base `  S ) )
9 fssres 5429 . . . . 5  |-  ( ( F : ( Base `  S ) --> ( Base `  T )  /\  X  C_  ( Base `  S
) )  ->  ( F  |`  X ) : X --> ( Base `  T
) )
107, 8, 9syl2an 289 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X ) : X --> ( Base `  T )
)
112a1i 9 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  U  =  ( Ss  X ) )
12 eqidd 2194 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( Base `  S )  =  (
Base `  S )
)
13 submrcl 13043 . . . . . . 7  |-  ( X  e.  (SubMnd `  S
)  ->  S  e.  Mnd )
1413adantl 277 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  S  e.  Mnd )
158adantl 277 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  X  C_  ( Base `  S ) )
1611, 12, 14, 15ressbas2d 12686 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  X  =  ( Base `  U )
)
1716feq2d 5391 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) : X --> ( Base `  T
)  <->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
) )
1810, 17mpbid 147 . . 3  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
)
19 simpll 527 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  F  e.  ( S MndHom  T ) )
208ad2antlr 489 . . . . . . . 8  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  X  C_  ( Base `  S ) )
21 simprl 529 . . . . . . . 8  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  x  e.  X )
2220, 21sseldd 3180 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  x  e.  ( Base `  S )
)
23 simprr 531 . . . . . . . 8  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  y  e.  X )
2420, 23sseldd 3180 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  y  e.  ( Base `  S )
)
25 eqid 2193 . . . . . . . 8  |-  ( +g  `  S )  =  ( +g  `  S )
26 eqid 2193 . . . . . . . 8  |-  ( +g  `  T )  =  ( +g  `  T )
275, 25, 26mhmlin 13039 . . . . . . 7  |-  ( ( F  e.  ( S MndHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
2819, 22, 24, 27syl3anc 1249 . . . . . 6  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
2925submcl 13051 . . . . . . . . 9  |-  ( ( X  e.  (SubMnd `  S )  /\  x  e.  X  /\  y  e.  X )  ->  (
x ( +g  `  S
) y )  e.  X )
30293expb 1206 . . . . . . . 8  |-  ( ( X  e.  (SubMnd `  S )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
( +g  `  S ) y )  e.  X
)
3130adantll 476 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
( +g  `  S ) y )  e.  X
)
3231fvresd 5579 . . . . . 6  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( F `
 ( x ( +g  `  S ) y ) ) )
33 fvres 5578 . . . . . . . 8  |-  ( x  e.  X  ->  (
( F  |`  X ) `
 x )  =  ( F `  x
) )
34 fvres 5578 . . . . . . . 8  |-  ( y  e.  X  ->  (
( F  |`  X ) `
 y )  =  ( F `  y
) )
3533, 34oveqan12d 5937 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  =  ( ( F `  x
) ( +g  `  T
) ( F `  y ) ) )
3635adantl 277 . . . . . 6  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( (
( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) )  =  ( ( F `  x
) ( +g  `  T
) ( F `  y ) ) )
3728, 32, 363eqtr4d 2236 . . . . 5  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) ) )
3837ralrimivva 2576 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  A. x  e.  X  A. y  e.  X  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) ) )
392a1i 9 . . . . . . . . . 10  |-  ( X  e.  (SubMnd `  S
)  ->  U  =  ( Ss  X ) )
40 eqidd 2194 . . . . . . . . . 10  |-  ( X  e.  (SubMnd `  S
)  ->  ( +g  `  S )  =  ( +g  `  S ) )
41 id 19 . . . . . . . . . 10  |-  ( X  e.  (SubMnd `  S
)  ->  X  e.  (SubMnd `  S ) )
4239, 40, 41, 13ressplusgd 12746 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  S
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
4342adantl 277 . . . . . . . 8  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
4443oveqd 5935 . . . . . . 7  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( x
( +g  `  S ) y )  =  ( x ( +g  `  U
) y ) )
4544fveqeq2d 5562 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( (
( F  |`  X ) `
 ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  <->  ( ( F  |`  X ) `  ( x ( +g  `  U ) y ) )  =  ( ( ( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) ) ) )
4616, 45raleqbidv 2706 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( A. y  e.  X  (
( F  |`  X ) `
 ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  <->  A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) ) )
4716, 46raleqbidv 2706 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( A. x  e.  X  A. y  e.  X  (
( F  |`  X ) `
 ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  <->  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) ) )
4838, 47mpbid 147 . . 3  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) )
49 eqid 2193 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
5049subm0cl 13050 . . . . . 6  |-  ( X  e.  (SubMnd `  S
)  ->  ( 0g `  S )  e.  X
)
5150adantl 277 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( 0g `  S )  e.  X
)
5251fvresd 5579 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) `  ( 0g `  S ) )  =  ( F `
 ( 0g `  S ) ) )
532, 49subm0 13054 . . . . . 6  |-  ( X  e.  (SubMnd `  S
)  ->  ( 0g `  S )  =  ( 0g `  U ) )
5453adantl 277 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( 0g `  S )  =  ( 0g `  U ) )
5554fveq2d 5558 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) `  ( 0g `  S ) )  =  ( ( F  |`  X ) `  ( 0g `  U
) ) )
56 eqid 2193 . . . . . 6  |-  ( 0g
`  T )  =  ( 0g `  T
)
5749, 56mhm0 13040 . . . . 5  |-  ( F  e.  ( S MndHom  T
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
5857adantr 276 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
5952, 55, 583eqtr3d 2234 . . 3  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) `  ( 0g `  U ) )  =  ( 0g
`  T ) )
6018, 48, 593jca 1179 . 2  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) : ( Base `  U
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) )  /\  ( ( F  |`  X ) `  ( 0g `  U ) )  =  ( 0g `  T ) ) )
61 eqid 2193 . . 3  |-  ( Base `  U )  =  (
Base `  U )
62 eqid 2193 . . 3  |-  ( +g  `  U )  =  ( +g  `  U )
63 eqid 2193 . . 3  |-  ( 0g
`  U )  =  ( 0g `  U
)
6461, 6, 62, 26, 63, 56ismhm 13033 . 2  |-  ( ( F  |`  X )  e.  ( U MndHom  T )  <-> 
( ( U  e. 
Mnd  /\  T  e.  Mnd )  /\  (
( F  |`  X ) : ( Base `  U
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) )  /\  ( ( F  |`  X ) `  ( 0g `  U ) )  =  ( 0g `  T ) ) ) )
654, 60, 64sylanbrc 417 1  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X )  e.  ( U MndHom  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3153    |` cres 4661   -->wf 5250   ` cfv 5254  (class class class)co 5918   Basecbs 12618   ↾s cress 12619   +g cplusg 12695   0gc0g 12867   Mndcmnd 12997   MndHom cmhm 13029  SubMndcsubmnd 13030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-submnd 13032
This theorem is referenced by:  resrhm  13744
  Copyright terms: Public domain W3C validator