ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resghm Unicode version

Theorem resghm 13711
Description: Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypothesis
Ref Expression
resghm.u  |-  U  =  ( Ss  X )
Assertion
Ref Expression
resghm  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X )  e.  ( U  GrpHom  T ) )

Proof of Theorem resghm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . 2  |-  ( Base `  U )  =  (
Base `  U )
2 eqid 2207 . 2  |-  ( Base `  T )  =  (
Base `  T )
3 eqid 2207 . 2  |-  ( +g  `  U )  =  ( +g  `  U )
4 eqid 2207 . 2  |-  ( +g  `  T )  =  ( +g  `  T )
5 resghm.u . . . 4  |-  U  =  ( Ss  X )
65subggrp 13628 . . 3  |-  ( X  e.  (SubGrp `  S
)  ->  U  e.  Grp )
76adantl 277 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  U  e.  Grp )
8 ghmgrp2 13697 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
98adantr 276 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  T  e.  Grp )
10 eqid 2207 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
1110, 2ghmf 13698 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
1210subgss 13625 . . . 4  |-  ( X  e.  (SubGrp `  S
)  ->  X  C_  ( Base `  S ) )
13 fssres 5473 . . . 4  |-  ( ( F : ( Base `  S ) --> ( Base `  T )  /\  X  C_  ( Base `  S
) )  ->  ( F  |`  X ) : X --> ( Base `  T
) )
1411, 12, 13syl2an 289 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X ) : X --> ( Base `  T )
)
155a1i 9 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  U  =  ( Ss  X ) )
16 eqidd 2208 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( Base `  S )  =  (
Base `  S )
)
17 subgrcl 13630 . . . . . 6  |-  ( X  e.  (SubGrp `  S
)  ->  S  e.  Grp )
1817adantl 277 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  S  e.  Grp )
1912adantl 277 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  X  C_  ( Base `  S ) )
2015, 16, 18, 19ressbas2d 13015 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  X  =  ( Base `  U )
)
2120feq2d 5433 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( ( F  |`  X ) : X --> ( Base `  T
)  <->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
) )
2214, 21mpbid 147 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
)
23 eleq2 2271 . . . . . 6  |-  ( X  =  ( Base `  U
)  ->  ( a  e.  X  <->  a  e.  (
Base `  U )
) )
24 eleq2 2271 . . . . . 6  |-  ( X  =  ( Base `  U
)  ->  ( b  e.  X  <->  b  e.  (
Base `  U )
) )
2523, 24anbi12d 473 . . . . 5  |-  ( X  =  ( Base `  U
)  ->  ( (
a  e.  X  /\  b  e.  X )  <->  ( a  e.  ( Base `  U )  /\  b  e.  ( Base `  U
) ) ) )
2620, 25syl 14 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( (
a  e.  X  /\  b  e.  X )  <->  ( a  e.  ( Base `  U )  /\  b  e.  ( Base `  U
) ) ) )
2726biimpar 297 . . 3  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  ( Base `  U )  /\  b  e.  ( Base `  U
) ) )  -> 
( a  e.  X  /\  b  e.  X
) )
28 simpll 527 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  F  e.  ( S  GrpHom  T ) )
2919sselda 3201 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  a  e.  X )  ->  a  e.  ( Base `  S
) )
3029adantrr 479 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  a  e.  ( Base `  S )
)
3119sselda 3201 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  b  e.  X )  ->  b  e.  ( Base `  S
) )
3231adantrl 478 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  b  e.  ( Base `  S )
)
33 eqid 2207 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
3410, 33, 4ghmlin 13699 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  a  e.  ( Base `  S
)  /\  b  e.  ( Base `  S )
)  ->  ( F `  ( a ( +g  `  S ) b ) )  =  ( ( F `  a ) ( +g  `  T
) ( F `  b ) ) )
3528, 30, 32, 34syl3anc 1250 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( F `  ( a ( +g  `  S ) b ) )  =  ( ( F `  a ) ( +g  `  T
) ( F `  b ) ) )
365a1i 9 . . . . . . . . 9  |-  ( X  e.  (SubGrp `  S
)  ->  U  =  ( Ss  X ) )
37 eqidd 2208 . . . . . . . . 9  |-  ( X  e.  (SubGrp `  S
)  ->  ( +g  `  S )  =  ( +g  `  S ) )
38 id 19 . . . . . . . . 9  |-  ( X  e.  (SubGrp `  S
)  ->  X  e.  (SubGrp `  S ) )
3936, 37, 38, 17ressplusgd 13076 . . . . . . . 8  |-  ( X  e.  (SubGrp `  S
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
4039ad2antlr 489 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
4140oveqd 5984 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( a
( +g  `  S ) b )  =  ( a ( +g  `  U
) b ) )
4241fveq2d 5603 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( ( F  |`  X ) `  ( a ( +g  `  S ) b ) )  =  ( ( F  |`  X ) `  ( a ( +g  `  U ) b ) ) )
4333subgcl 13635 . . . . . . . 8  |-  ( ( X  e.  (SubGrp `  S )  /\  a  e.  X  /\  b  e.  X )  ->  (
a ( +g  `  S
) b )  e.  X )
44433expb 1207 . . . . . . 7  |-  ( ( X  e.  (SubGrp `  S )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( a
( +g  `  S ) b )  e.  X
)
4544adantll 476 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( a
( +g  `  S ) b )  e.  X
)
4645fvresd 5624 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( ( F  |`  X ) `  ( a ( +g  `  S ) b ) )  =  ( F `
 ( a ( +g  `  S ) b ) ) )
4742, 46eqtr3d 2242 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( ( F  |`  X ) `  ( a ( +g  `  U ) b ) )  =  ( F `
 ( a ( +g  `  S ) b ) ) )
48 fvres 5623 . . . . . 6  |-  ( a  e.  X  ->  (
( F  |`  X ) `
 a )  =  ( F `  a
) )
49 fvres 5623 . . . . . 6  |-  ( b  e.  X  ->  (
( F  |`  X ) `
 b )  =  ( F `  b
) )
5048, 49oveqan12d 5986 . . . . 5  |-  ( ( a  e.  X  /\  b  e.  X )  ->  ( ( ( F  |`  X ) `  a
) ( +g  `  T
) ( ( F  |`  X ) `  b
) )  =  ( ( F `  a
) ( +g  `  T
) ( F `  b ) ) )
5150adantl 277 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( (
( F  |`  X ) `
 a ) ( +g  `  T ) ( ( F  |`  X ) `  b
) )  =  ( ( F `  a
) ( +g  `  T
) ( F `  b ) ) )
5235, 47, 513eqtr4d 2250 . . 3  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( ( F  |`  X ) `  ( a ( +g  `  U ) b ) )  =  ( ( ( F  |`  X ) `
 a ) ( +g  `  T ) ( ( F  |`  X ) `  b
) ) )
5327, 52syldan 282 . 2  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  ( Base `  U )  /\  b  e.  ( Base `  U
) ) )  -> 
( ( F  |`  X ) `  (
a ( +g  `  U
) b ) )  =  ( ( ( F  |`  X ) `  a ) ( +g  `  T ) ( ( F  |`  X ) `  b ) ) )
541, 2, 3, 4, 7, 9, 22, 53isghmd 13703 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X )  e.  ( U  GrpHom  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    C_ wss 3174    |` cres 4695   -->wf 5286   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   +g cplusg 13024   Grpcgrp 13447  SubGrpcsubg 13618    GrpHom cghm 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-subg 13621  df-ghm 13692
This theorem is referenced by:  ghmima  13716  resrhm  14125
  Copyright terms: Public domain W3C validator