ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resghm Unicode version

Theorem resghm 13466
Description: Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypothesis
Ref Expression
resghm.u  |-  U  =  ( Ss  X )
Assertion
Ref Expression
resghm  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X )  e.  ( U  GrpHom  T ) )

Proof of Theorem resghm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . 2  |-  ( Base `  U )  =  (
Base `  U )
2 eqid 2196 . 2  |-  ( Base `  T )  =  (
Base `  T )
3 eqid 2196 . 2  |-  ( +g  `  U )  =  ( +g  `  U )
4 eqid 2196 . 2  |-  ( +g  `  T )  =  ( +g  `  T )
5 resghm.u . . . 4  |-  U  =  ( Ss  X )
65subggrp 13383 . . 3  |-  ( X  e.  (SubGrp `  S
)  ->  U  e.  Grp )
76adantl 277 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  U  e.  Grp )
8 ghmgrp2 13452 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
98adantr 276 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  T  e.  Grp )
10 eqid 2196 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
1110, 2ghmf 13453 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
1210subgss 13380 . . . 4  |-  ( X  e.  (SubGrp `  S
)  ->  X  C_  ( Base `  S ) )
13 fssres 5436 . . . 4  |-  ( ( F : ( Base `  S ) --> ( Base `  T )  /\  X  C_  ( Base `  S
) )  ->  ( F  |`  X ) : X --> ( Base `  T
) )
1411, 12, 13syl2an 289 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X ) : X --> ( Base `  T )
)
155a1i 9 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  U  =  ( Ss  X ) )
16 eqidd 2197 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( Base `  S )  =  (
Base `  S )
)
17 subgrcl 13385 . . . . . 6  |-  ( X  e.  (SubGrp `  S
)  ->  S  e.  Grp )
1817adantl 277 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  S  e.  Grp )
1912adantl 277 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  X  C_  ( Base `  S ) )
2015, 16, 18, 19ressbas2d 12771 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  X  =  ( Base `  U )
)
2120feq2d 5398 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( ( F  |`  X ) : X --> ( Base `  T
)  <->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
) )
2214, 21mpbid 147 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
)
23 eleq2 2260 . . . . . 6  |-  ( X  =  ( Base `  U
)  ->  ( a  e.  X  <->  a  e.  (
Base `  U )
) )
24 eleq2 2260 . . . . . 6  |-  ( X  =  ( Base `  U
)  ->  ( b  e.  X  <->  b  e.  (
Base `  U )
) )
2523, 24anbi12d 473 . . . . 5  |-  ( X  =  ( Base `  U
)  ->  ( (
a  e.  X  /\  b  e.  X )  <->  ( a  e.  ( Base `  U )  /\  b  e.  ( Base `  U
) ) ) )
2620, 25syl 14 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( (
a  e.  X  /\  b  e.  X )  <->  ( a  e.  ( Base `  U )  /\  b  e.  ( Base `  U
) ) ) )
2726biimpar 297 . . 3  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  ( Base `  U )  /\  b  e.  ( Base `  U
) ) )  -> 
( a  e.  X  /\  b  e.  X
) )
28 simpll 527 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  F  e.  ( S  GrpHom  T ) )
2919sselda 3184 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  a  e.  X )  ->  a  e.  ( Base `  S
) )
3029adantrr 479 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  a  e.  ( Base `  S )
)
3119sselda 3184 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  b  e.  X )  ->  b  e.  ( Base `  S
) )
3231adantrl 478 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  b  e.  ( Base `  S )
)
33 eqid 2196 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
3410, 33, 4ghmlin 13454 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  a  e.  ( Base `  S
)  /\  b  e.  ( Base `  S )
)  ->  ( F `  ( a ( +g  `  S ) b ) )  =  ( ( F `  a ) ( +g  `  T
) ( F `  b ) ) )
3528, 30, 32, 34syl3anc 1249 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( F `  ( a ( +g  `  S ) b ) )  =  ( ( F `  a ) ( +g  `  T
) ( F `  b ) ) )
365a1i 9 . . . . . . . . 9  |-  ( X  e.  (SubGrp `  S
)  ->  U  =  ( Ss  X ) )
37 eqidd 2197 . . . . . . . . 9  |-  ( X  e.  (SubGrp `  S
)  ->  ( +g  `  S )  =  ( +g  `  S ) )
38 id 19 . . . . . . . . 9  |-  ( X  e.  (SubGrp `  S
)  ->  X  e.  (SubGrp `  S ) )
3936, 37, 38, 17ressplusgd 12831 . . . . . . . 8  |-  ( X  e.  (SubGrp `  S
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
4039ad2antlr 489 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
4140oveqd 5942 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( a
( +g  `  S ) b )  =  ( a ( +g  `  U
) b ) )
4241fveq2d 5565 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( ( F  |`  X ) `  ( a ( +g  `  S ) b ) )  =  ( ( F  |`  X ) `  ( a ( +g  `  U ) b ) ) )
4333subgcl 13390 . . . . . . . 8  |-  ( ( X  e.  (SubGrp `  S )  /\  a  e.  X  /\  b  e.  X )  ->  (
a ( +g  `  S
) b )  e.  X )
44433expb 1206 . . . . . . 7  |-  ( ( X  e.  (SubGrp `  S )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( a
( +g  `  S ) b )  e.  X
)
4544adantll 476 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( a
( +g  `  S ) b )  e.  X
)
4645fvresd 5586 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( ( F  |`  X ) `  ( a ( +g  `  S ) b ) )  =  ( F `
 ( a ( +g  `  S ) b ) ) )
4742, 46eqtr3d 2231 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( ( F  |`  X ) `  ( a ( +g  `  U ) b ) )  =  ( F `
 ( a ( +g  `  S ) b ) ) )
48 fvres 5585 . . . . . 6  |-  ( a  e.  X  ->  (
( F  |`  X ) `
 a )  =  ( F `  a
) )
49 fvres 5585 . . . . . 6  |-  ( b  e.  X  ->  (
( F  |`  X ) `
 b )  =  ( F `  b
) )
5048, 49oveqan12d 5944 . . . . 5  |-  ( ( a  e.  X  /\  b  e.  X )  ->  ( ( ( F  |`  X ) `  a
) ( +g  `  T
) ( ( F  |`  X ) `  b
) )  =  ( ( F `  a
) ( +g  `  T
) ( F `  b ) ) )
5150adantl 277 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( (
( F  |`  X ) `
 a ) ( +g  `  T ) ( ( F  |`  X ) `  b
) )  =  ( ( F `  a
) ( +g  `  T
) ( F `  b ) ) )
5235, 47, 513eqtr4d 2239 . . 3  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( ( F  |`  X ) `  ( a ( +g  `  U ) b ) )  =  ( ( ( F  |`  X ) `
 a ) ( +g  `  T ) ( ( F  |`  X ) `  b
) ) )
5327, 52syldan 282 . 2  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  ( Base `  U )  /\  b  e.  ( Base `  U
) ) )  -> 
( ( F  |`  X ) `  (
a ( +g  `  U
) b ) )  =  ( ( ( F  |`  X ) `  a ) ( +g  `  T ) ( ( F  |`  X ) `  b ) ) )
541, 2, 3, 4, 7, 9, 22, 53isghmd 13458 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X )  e.  ( U  GrpHom  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    C_ wss 3157    |` cres 4666   -->wf 5255   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   +g cplusg 12780   Grpcgrp 13202  SubGrpcsubg 13373    GrpHom cghm 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-subg 13376  df-ghm 13447
This theorem is referenced by:  ghmima  13471  resrhm  13880
  Copyright terms: Public domain W3C validator