| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resghm | Unicode version | ||
| Description: Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| resghm.u |
|
| Ref | Expression |
|---|---|
| resghm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. 2
| |
| 2 | eqid 2229 |
. 2
| |
| 3 | eqid 2229 |
. 2
| |
| 4 | eqid 2229 |
. 2
| |
| 5 | resghm.u |
. . . 4
| |
| 6 | 5 | subggrp 13714 |
. . 3
|
| 7 | 6 | adantl 277 |
. 2
|
| 8 | ghmgrp2 13783 |
. . 3
| |
| 9 | 8 | adantr 276 |
. 2
|
| 10 | eqid 2229 |
. . . . 5
| |
| 11 | 10, 2 | ghmf 13784 |
. . . 4
|
| 12 | 10 | subgss 13711 |
. . . 4
|
| 13 | fssres 5501 |
. . . 4
| |
| 14 | 11, 12, 13 | syl2an 289 |
. . 3
|
| 15 | 5 | a1i 9 |
. . . . 5
|
| 16 | eqidd 2230 |
. . . . 5
| |
| 17 | subgrcl 13716 |
. . . . . 6
| |
| 18 | 17 | adantl 277 |
. . . . 5
|
| 19 | 12 | adantl 277 |
. . . . 5
|
| 20 | 15, 16, 18, 19 | ressbas2d 13101 |
. . . 4
|
| 21 | 20 | feq2d 5461 |
. . 3
|
| 22 | 14, 21 | mpbid 147 |
. 2
|
| 23 | eleq2 2293 |
. . . . . 6
| |
| 24 | eleq2 2293 |
. . . . . 6
| |
| 25 | 23, 24 | anbi12d 473 |
. . . . 5
|
| 26 | 20, 25 | syl 14 |
. . . 4
|
| 27 | 26 | biimpar 297 |
. . 3
|
| 28 | simpll 527 |
. . . . 5
| |
| 29 | 19 | sselda 3224 |
. . . . . 6
|
| 30 | 29 | adantrr 479 |
. . . . 5
|
| 31 | 19 | sselda 3224 |
. . . . . 6
|
| 32 | 31 | adantrl 478 |
. . . . 5
|
| 33 | eqid 2229 |
. . . . . 6
| |
| 34 | 10, 33, 4 | ghmlin 13785 |
. . . . 5
|
| 35 | 28, 30, 32, 34 | syl3anc 1271 |
. . . 4
|
| 36 | 5 | a1i 9 |
. . . . . . . . 9
|
| 37 | eqidd 2230 |
. . . . . . . . 9
| |
| 38 | id 19 |
. . . . . . . . 9
| |
| 39 | 36, 37, 38, 17 | ressplusgd 13162 |
. . . . . . . 8
|
| 40 | 39 | ad2antlr 489 |
. . . . . . 7
|
| 41 | 40 | oveqd 6018 |
. . . . . 6
|
| 42 | 41 | fveq2d 5631 |
. . . . 5
|
| 43 | 33 | subgcl 13721 |
. . . . . . . 8
|
| 44 | 43 | 3expb 1228 |
. . . . . . 7
|
| 45 | 44 | adantll 476 |
. . . . . 6
|
| 46 | 45 | fvresd 5652 |
. . . . 5
|
| 47 | 42, 46 | eqtr3d 2264 |
. . . 4
|
| 48 | fvres 5651 |
. . . . . 6
| |
| 49 | fvres 5651 |
. . . . . 6
| |
| 50 | 48, 49 | oveqan12d 6020 |
. . . . 5
|
| 51 | 50 | adantl 277 |
. . . 4
|
| 52 | 35, 47, 51 | 3eqtr4d 2272 |
. . 3
|
| 53 | 27, 52 | syldan 282 |
. 2
|
| 54 | 1, 2, 3, 4, 7, 9, 22, 53 | isghmd 13789 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-iress 13040 df-plusg 13123 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-subg 13707 df-ghm 13778 |
| This theorem is referenced by: ghmima 13802 resrhm 14212 |
| Copyright terms: Public domain | W3C validator |