| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resghm | Unicode version | ||
| Description: Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| resghm.u |
|
| Ref | Expression |
|---|---|
| resghm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. 2
| |
| 2 | eqid 2196 |
. 2
| |
| 3 | eqid 2196 |
. 2
| |
| 4 | eqid 2196 |
. 2
| |
| 5 | resghm.u |
. . . 4
| |
| 6 | 5 | subggrp 13307 |
. . 3
|
| 7 | 6 | adantl 277 |
. 2
|
| 8 | ghmgrp2 13376 |
. . 3
| |
| 9 | 8 | adantr 276 |
. 2
|
| 10 | eqid 2196 |
. . . . 5
| |
| 11 | 10, 2 | ghmf 13377 |
. . . 4
|
| 12 | 10 | subgss 13304 |
. . . 4
|
| 13 | fssres 5433 |
. . . 4
| |
| 14 | 11, 12, 13 | syl2an 289 |
. . 3
|
| 15 | 5 | a1i 9 |
. . . . 5
|
| 16 | eqidd 2197 |
. . . . 5
| |
| 17 | subgrcl 13309 |
. . . . . 6
| |
| 18 | 17 | adantl 277 |
. . . . 5
|
| 19 | 12 | adantl 277 |
. . . . 5
|
| 20 | 15, 16, 18, 19 | ressbas2d 12746 |
. . . 4
|
| 21 | 20 | feq2d 5395 |
. . 3
|
| 22 | 14, 21 | mpbid 147 |
. 2
|
| 23 | eleq2 2260 |
. . . . . 6
| |
| 24 | eleq2 2260 |
. . . . . 6
| |
| 25 | 23, 24 | anbi12d 473 |
. . . . 5
|
| 26 | 20, 25 | syl 14 |
. . . 4
|
| 27 | 26 | biimpar 297 |
. . 3
|
| 28 | simpll 527 |
. . . . 5
| |
| 29 | 19 | sselda 3183 |
. . . . . 6
|
| 30 | 29 | adantrr 479 |
. . . . 5
|
| 31 | 19 | sselda 3183 |
. . . . . 6
|
| 32 | 31 | adantrl 478 |
. . . . 5
|
| 33 | eqid 2196 |
. . . . . 6
| |
| 34 | 10, 33, 4 | ghmlin 13378 |
. . . . 5
|
| 35 | 28, 30, 32, 34 | syl3anc 1249 |
. . . 4
|
| 36 | 5 | a1i 9 |
. . . . . . . . 9
|
| 37 | eqidd 2197 |
. . . . . . . . 9
| |
| 38 | id 19 |
. . . . . . . . 9
| |
| 39 | 36, 37, 38, 17 | ressplusgd 12806 |
. . . . . . . 8
|
| 40 | 39 | ad2antlr 489 |
. . . . . . 7
|
| 41 | 40 | oveqd 5939 |
. . . . . 6
|
| 42 | 41 | fveq2d 5562 |
. . . . 5
|
| 43 | 33 | subgcl 13314 |
. . . . . . . 8
|
| 44 | 43 | 3expb 1206 |
. . . . . . 7
|
| 45 | 44 | adantll 476 |
. . . . . 6
|
| 46 | 45 | fvresd 5583 |
. . . . 5
|
| 47 | 42, 46 | eqtr3d 2231 |
. . . 4
|
| 48 | fvres 5582 |
. . . . . 6
| |
| 49 | fvres 5582 |
. . . . . 6
| |
| 50 | 48, 49 | oveqan12d 5941 |
. . . . 5
|
| 51 | 50 | adantl 277 |
. . . 4
|
| 52 | 35, 47, 51 | 3eqtr4d 2239 |
. . 3
|
| 53 | 27, 52 | syldan 282 |
. 2
|
| 54 | 1, 2, 3, 4, 7, 9, 22, 53 | isghmd 13382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-subg 13300 df-ghm 13371 |
| This theorem is referenced by: ghmima 13395 resrhm 13804 |
| Copyright terms: Public domain | W3C validator |