![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvresd | GIF version |
Description: The value of a restricted function, deduction version of fvres 5578. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
fvresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
fvresd | ⊢ (𝜑 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | fvres 5578 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ↾ cres 4661 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-res 4671 df-iota 5215 df-fv 5262 |
This theorem is referenced by: difinfsn 7159 seqf1oglem2 10591 gsumsplit1r 12981 resmhm 13059 resghm 13330 upxp 14440 uptx 14442 reeflog 14998 relogef 14999 trilpolemlt1 15531 |
Copyright terms: Public domain | W3C validator |