ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvresd GIF version

Theorem fvresd 5651
Description: The value of a restricted function, deduction version of fvres 5650. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
fvresd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
fvresd (𝜑 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))

Proof of Theorem fvresd
StepHypRef Expression
1 fvresd.1 . 2 (𝜑𝐴𝐵)
2 fvres 5650 . 2 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
31, 2syl 14 1 (𝜑 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  cres 4720  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-res 4730  df-iota 5277  df-fv 5325
This theorem is referenced by:  difinfsn  7263  seqf1oglem2  10737  gsumsplit1r  13426  resmhm  13515  resghm  13792  upxp  14940  uptx  14942  reeflog  15531  relogef  15532  mpodvdsmulf1o  15658  trilpolemlt1  16368
  Copyright terms: Public domain W3C validator