Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvresd GIF version

Theorem fvresd 5446
 Description: The value of a restricted function, deduction version of fvres 5445. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
fvresd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
fvresd (𝜑 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))

Proof of Theorem fvresd
StepHypRef Expression
1 fvresd.1 . 2 (𝜑𝐴𝐵)
2 fvres 5445 . 2 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
31, 2syl 14 1 (𝜑 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1331   ∈ wcel 1480   ↾ cres 4541  ‘cfv 5123 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-res 4551  df-iota 5088  df-fv 5131 This theorem is referenced by:  difinfsn  6985  upxp  12455  uptx  12457  reeflog  12964  relogef  12965  trilpolemlt1  13295
 Copyright terms: Public domain W3C validator