| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvresd | GIF version | ||
| Description: The value of a restricted function, deduction version of fvres 5582. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| fvresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fvresd | ⊢ (𝜑 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | fvres 5582 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ↾ cres 4665 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-res 4675 df-iota 5219 df-fv 5266 |
| This theorem is referenced by: difinfsn 7166 seqf1oglem2 10612 gsumsplit1r 13041 resmhm 13119 resghm 13390 upxp 14508 uptx 14510 reeflog 15099 relogef 15100 mpodvdsmulf1o 15226 trilpolemlt1 15685 |
| Copyright terms: Public domain | W3C validator |