ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ima0 GIF version

Theorem ima0 5001
Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
ima0 (𝐴 “ ∅) = ∅

Proof of Theorem ima0
StepHypRef Expression
1 df-ima 4653 . 2 (𝐴 “ ∅) = ran (𝐴 ↾ ∅)
2 res0 4925 . . 3 (𝐴 ↾ ∅) = ∅
32rneqi 4869 . 2 ran (𝐴 ↾ ∅) = ran ∅
4 rn0 4897 . 2 ran ∅ = ∅
51, 3, 43eqtri 2213 1 (𝐴 “ ∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1363  c0 3436  ran crn 4641  cres 4642  cima 4643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-v 2753  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-br 4018  df-opab 4079  df-xp 4646  df-cnv 4648  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653
This theorem is referenced by:  fiintim  6945  fidcenumlemrk  6970  fidcenumlemr  6971  ennnfonelem1  12425  ennnfonelemhf1o  12431
  Copyright terms: Public domain W3C validator