Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ima0 | GIF version |
Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
ima0 | ⊢ (𝐴 “ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4612 | . 2 ⊢ (𝐴 “ ∅) = ran (𝐴 ↾ ∅) | |
2 | res0 4883 | . . 3 ⊢ (𝐴 ↾ ∅) = ∅ | |
3 | 2 | rneqi 4827 | . 2 ⊢ ran (𝐴 ↾ ∅) = ran ∅ |
4 | rn0 4855 | . 2 ⊢ ran ∅ = ∅ | |
5 | 1, 3, 4 | 3eqtri 2189 | 1 ⊢ (𝐴 “ ∅) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1342 ∅c0 3405 ran crn 4600 ↾ cres 4601 “ cima 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-v 2724 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-br 3978 df-opab 4039 df-xp 4605 df-cnv 4607 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 |
This theorem is referenced by: fiintim 6886 fidcenumlemrk 6911 fidcenumlemr 6912 ennnfonelem1 12303 ennnfonelemhf1o 12309 |
Copyright terms: Public domain | W3C validator |