![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ima0 | GIF version |
Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
ima0 | ⊢ (𝐴 “ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4673 | . 2 ⊢ (𝐴 “ ∅) = ran (𝐴 ↾ ∅) | |
2 | res0 4947 | . . 3 ⊢ (𝐴 ↾ ∅) = ∅ | |
3 | 2 | rneqi 4891 | . 2 ⊢ ran (𝐴 ↾ ∅) = ran ∅ |
4 | rn0 4919 | . 2 ⊢ ran ∅ = ∅ | |
5 | 1, 3, 4 | 3eqtri 2218 | 1 ⊢ (𝐴 “ ∅) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∅c0 3447 ran crn 4661 ↾ cres 4662 “ cima 4663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 |
This theorem is referenced by: fiintim 6987 fidcenumlemrk 7015 fidcenumlemr 7016 ennnfonelem1 12567 ennnfonelemhf1o 12573 |
Copyright terms: Public domain | W3C validator |