ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ima0 GIF version

Theorem ima0 4958
Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
ima0 (𝐴 “ ∅) = ∅

Proof of Theorem ima0
StepHypRef Expression
1 df-ima 4612 . 2 (𝐴 “ ∅) = ran (𝐴 ↾ ∅)
2 res0 4883 . . 3 (𝐴 ↾ ∅) = ∅
32rneqi 4827 . 2 ran (𝐴 ↾ ∅) = ran ∅
4 rn0 4855 . 2 ran ∅ = ∅
51, 3, 43eqtri 2189 1 (𝐴 “ ∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1342  c0 3405  ran crn 4600  cres 4601  cima 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-v 2724  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-br 3978  df-opab 4039  df-xp 4605  df-cnv 4607  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612
This theorem is referenced by:  fiintim  6886  fidcenumlemrk  6911  fidcenumlemr  6912  ennnfonelem1  12303  ennnfonelemhf1o  12309
  Copyright terms: Public domain W3C validator