![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ima0 | GIF version |
Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
ima0 | ⊢ (𝐴 “ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4653 | . 2 ⊢ (𝐴 “ ∅) = ran (𝐴 ↾ ∅) | |
2 | res0 4925 | . . 3 ⊢ (𝐴 ↾ ∅) = ∅ | |
3 | 2 | rneqi 4869 | . 2 ⊢ ran (𝐴 ↾ ∅) = ran ∅ |
4 | rn0 4897 | . 2 ⊢ ran ∅ = ∅ | |
5 | 1, 3, 4 | 3eqtri 2213 | 1 ⊢ (𝐴 “ ∅) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∅c0 3436 ran crn 4641 ↾ cres 4642 “ cima 4643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-v 2753 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-nul 3437 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-br 4018 df-opab 4079 df-xp 4646 df-cnv 4648 df-dm 4650 df-rn 4651 df-res 4652 df-ima 4653 |
This theorem is referenced by: fiintim 6945 fidcenumlemrk 6970 fidcenumlemr 6971 ennnfonelem1 12425 ennnfonelemhf1o 12431 |
Copyright terms: Public domain | W3C validator |