ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaundi GIF version

Theorem imaundi 5104
Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
imaundi (𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem imaundi
StepHypRef Expression
1 resundi 4981 . . . 4 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
21rneqi 4915 . . 3 ran (𝐴 ↾ (𝐵𝐶)) = ran ((𝐴𝐵) ∪ (𝐴𝐶))
3 rnun 5100 . . 3 ran ((𝐴𝐵) ∪ (𝐴𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
42, 3eqtri 2227 . 2 ran (𝐴 ↾ (𝐵𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
5 df-ima 4696 . 2 (𝐴 “ (𝐵𝐶)) = ran (𝐴 ↾ (𝐵𝐶))
6 df-ima 4696 . . 3 (𝐴𝐵) = ran (𝐴𝐵)
7 df-ima 4696 . . 3 (𝐴𝐶) = ran (𝐴𝐶)
86, 7uneq12i 3329 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
94, 5, 83eqtr4i 2237 1 (𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3168  ran crn 4684  cres 4685  cima 4686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-cnv 4691  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696
This theorem is referenced by:  fnimapr  5652  fiintim  7043  fidcenumlemrks  7070  fidcenumlemr  7072  resunimafz0  10998  ennnfonelemhf1o  12859
  Copyright terms: Public domain W3C validator