Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imaundi | GIF version |
Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
imaundi | ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundi 4872 | . . . 4 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) | |
2 | 1 | rneqi 4807 | . . 3 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
3 | rnun 4987 | . . 3 ⊢ ran ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) | |
4 | 2, 3 | eqtri 2175 | . 2 ⊢ ran (𝐴 ↾ (𝐵 ∪ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
5 | df-ima 4592 | . 2 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ran (𝐴 ↾ (𝐵 ∪ 𝐶)) | |
6 | df-ima 4592 | . . 3 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
7 | df-ima 4592 | . . 3 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
8 | 6, 7 | uneq12i 3255 | . 2 ⊢ ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) = (ran (𝐴 ↾ 𝐵) ∪ ran (𝐴 ↾ 𝐶)) |
9 | 4, 5, 8 | 3eqtr4i 2185 | 1 ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1332 ∪ cun 3096 ran crn 4580 ↾ cres 4581 “ cima 4582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-xp 4585 df-cnv 4587 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 |
This theorem is referenced by: fnimapr 5521 fiintim 6862 fidcenumlemrks 6886 fidcenumlemr 6888 resunimafz0 10679 ennnfonelemhf1o 12093 |
Copyright terms: Public domain | W3C validator |