ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnimapr Unicode version

Theorem fnimapr 5447
Description: The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.)
Assertion
Ref Expression
fnimapr  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  ( F " { B ,  C }
)  =  { ( F `  B ) ,  ( F `  C ) } )

Proof of Theorem fnimapr
StepHypRef Expression
1 fnsnfv 5446 . . . . 5  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  { ( F `  B ) }  =  ( F " { B } ) )
213adant3 984 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  { ( F `  B ) }  =  ( F " { B } ) )
3 fnsnfv 5446 . . . . 5  |-  ( ( F  Fn  A  /\  C  e.  A )  ->  { ( F `  C ) }  =  ( F " { C } ) )
433adant2 983 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  { ( F `  C ) }  =  ( F " { C } ) )
52, 4uneq12d 3199 . . 3  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  ( { ( F `
 B ) }  u.  { ( F `
 C ) } )  =  ( ( F " { B } )  u.  ( F " { C }
) ) )
65eqcomd 2121 . 2  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  ( ( F " { B } )  u.  ( F " { C } ) )  =  ( { ( F `
 B ) }  u.  { ( F `
 C ) } ) )
7 df-pr 3502 . . . 4  |-  { B ,  C }  =  ( { B }  u.  { C } )
87imaeq2i 4847 . . 3  |-  ( F
" { B ,  C } )  =  ( F " ( { B }  u.  { C } ) )
9 imaundi 4919 . . 3  |-  ( F
" ( { B }  u.  { C } ) )  =  ( ( F " { B } )  u.  ( F " { C } ) )
108, 9eqtri 2136 . 2  |-  ( F
" { B ,  C } )  =  ( ( F " { B } )  u.  ( F " { C }
) )
11 df-pr 3502 . 2  |-  { ( F `  B ) ,  ( F `  C ) }  =  ( { ( F `  B ) }  u.  { ( F `  C
) } )
126, 10, 113eqtr4g 2173 1  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  ( F " { B ,  C }
)  =  { ( F `  B ) ,  ( F `  C ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 945    = wceq 1314    e. wcel 1463    u. cun 3037   {csn 3495   {cpr 3496   "cima 4510    Fn wfn 5086   ` cfv 5091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-fv 5099
This theorem is referenced by:  fvinim0ffz  9958
  Copyright terms: Public domain W3C validator