ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnimapr Unicode version

Theorem fnimapr 5546
Description: The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.)
Assertion
Ref Expression
fnimapr  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  ( F " { B ,  C }
)  =  { ( F `  B ) ,  ( F `  C ) } )

Proof of Theorem fnimapr
StepHypRef Expression
1 fnsnfv 5545 . . . . 5  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  { ( F `  B ) }  =  ( F " { B } ) )
213adant3 1007 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  { ( F `  B ) }  =  ( F " { B } ) )
3 fnsnfv 5545 . . . . 5  |-  ( ( F  Fn  A  /\  C  e.  A )  ->  { ( F `  C ) }  =  ( F " { C } ) )
433adant2 1006 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  { ( F `  C ) }  =  ( F " { C } ) )
52, 4uneq12d 3277 . . 3  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  ( { ( F `
 B ) }  u.  { ( F `
 C ) } )  =  ( ( F " { B } )  u.  ( F " { C }
) ) )
65eqcomd 2171 . 2  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  ( ( F " { B } )  u.  ( F " { C } ) )  =  ( { ( F `
 B ) }  u.  { ( F `
 C ) } ) )
7 df-pr 3583 . . . 4  |-  { B ,  C }  =  ( { B }  u.  { C } )
87imaeq2i 4944 . . 3  |-  ( F
" { B ,  C } )  =  ( F " ( { B }  u.  { C } ) )
9 imaundi 5016 . . 3  |-  ( F
" ( { B }  u.  { C } ) )  =  ( ( F " { B } )  u.  ( F " { C } ) )
108, 9eqtri 2186 . 2  |-  ( F
" { B ,  C } )  =  ( ( F " { B } )  u.  ( F " { C }
) )
11 df-pr 3583 . 2  |-  { ( F `  B ) ,  ( F `  C ) }  =  ( { ( F `  B ) }  u.  { ( F `  C
) } )
126, 10, 113eqtr4g 2224 1  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  ( F " { B ,  C }
)  =  { ( F `  B ) ,  ( F `  C ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 968    = wceq 1343    e. wcel 2136    u. cun 3114   {csn 3576   {cpr 3577   "cima 4607    Fn wfn 5183   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  fvinim0ffz  10176
  Copyright terms: Public domain W3C validator