Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnimapr | Unicode version |
Description: The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
fnimapr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnsnfv 5567 | . . . . 5 | |
2 | 1 | 3adant3 1017 | . . . 4 |
3 | fnsnfv 5567 | . . . . 5 | |
4 | 3 | 3adant2 1016 | . . . 4 |
5 | 2, 4 | uneq12d 3288 | . . 3 |
6 | 5 | eqcomd 2181 | . 2 |
7 | df-pr 3596 | . . . 4 | |
8 | 7 | imaeq2i 4961 | . . 3 |
9 | imaundi 5033 | . . 3 | |
10 | 8, 9 | eqtri 2196 | . 2 |
11 | df-pr 3596 | . 2 | |
12 | 6, 10, 11 | 3eqtr4g 2233 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 978 wceq 1353 wcel 2146 cun 3125 csn 3589 cpr 3590 cima 4623 wfn 5203 cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 |
This theorem is referenced by: fvinim0ffz 10211 |
Copyright terms: Public domain | W3C validator |