Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fidcenumlemrks | Unicode version |
Description: Lemma for fidcenum 6921. Induction step for fidcenumlemrk 6919. (Contributed by Jim Kingdon, 20-Oct-2022.) |
Ref | Expression |
---|---|
fidcenumlemr.dc | DECID |
fidcenumlemr.f | |
fidcenumlemrks.j | |
fidcenumlemrks.jn | |
fidcenumlemrks.h | |
fidcenumlemrks.x |
Ref | Expression |
---|---|
fidcenumlemrks |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 | |
2 | elun1 3289 | . . . . 5 | |
3 | 1, 2 | syl 14 | . . . 4 |
4 | df-suc 4349 | . . . . . . 7 | |
5 | 4 | imaeq2i 4944 | . . . . . 6 |
6 | imaundi 5016 | . . . . . 6 | |
7 | 5, 6 | eqtri 2186 | . . . . 5 |
8 | 7 | eleq2i 2233 | . . . 4 |
9 | 3, 8 | sylibr 133 | . . 3 |
10 | 9 | orcd 723 | . 2 |
11 | simpr 109 | . . . . . . 7 | |
12 | fidcenumlemrks.x | . . . . . . . . . 10 | |
13 | elsng 3591 | . . . . . . . . . 10 | |
14 | 12, 13 | syl 14 | . . . . . . . . 9 |
15 | fidcenumlemr.f | . . . . . . . . . . . 12 | |
16 | fofn 5412 | . . . . . . . . . . . 12 | |
17 | 15, 16 | syl 14 | . . . . . . . . . . 11 |
18 | fidcenumlemrks.jn | . . . . . . . . . . . 12 | |
19 | fidcenumlemrks.j | . . . . . . . . . . . . 13 | |
20 | sucidg 4394 | . . . . . . . . . . . . 13 | |
21 | 19, 20 | syl 14 | . . . . . . . . . . . 12 |
22 | 18, 21 | sseldd 3143 | . . . . . . . . . . 11 |
23 | fnsnfv 5545 | . . . . . . . . . . 11 | |
24 | 17, 22, 23 | syl2anc 409 | . . . . . . . . . 10 |
25 | 24 | eleq2d 2236 | . . . . . . . . 9 |
26 | 14, 25 | bitr3d 189 | . . . . . . . 8 |
27 | 26 | ad2antrr 480 | . . . . . . 7 |
28 | 11, 27 | mpbid 146 | . . . . . 6 |
29 | elun2 3290 | . . . . . 6 | |
30 | 28, 29 | syl 14 | . . . . 5 |
31 | 30, 8 | sylibr 133 | . . . 4 |
32 | 31 | orcd 723 | . . 3 |
33 | simplr 520 | . . . . . . 7 | |
34 | simpr 109 | . . . . . . . 8 | |
35 | 26 | ad2antrr 480 | . . . . . . . 8 |
36 | 34, 35 | mtbid 662 | . . . . . . 7 |
37 | ioran 742 | . . . . . . 7 | |
38 | 33, 36, 37 | sylanbrc 414 | . . . . . 6 |
39 | elun 3263 | . . . . . 6 | |
40 | 38, 39 | sylnibr 667 | . . . . 5 |
41 | 40, 8 | sylnibr 667 | . . . 4 |
42 | 41 | olcd 724 | . . 3 |
43 | fof 5410 | . . . . . . . 8 | |
44 | 15, 43 | syl 14 | . . . . . . 7 |
45 | 44, 22 | ffvelrnd 5621 | . . . . . 6 |
46 | fidcenumlemr.dc | . . . . . 6 DECID | |
47 | eqeq1 2172 | . . . . . . . 8 | |
48 | 47 | dcbid 828 | . . . . . . 7 DECID DECID |
49 | eqeq2 2175 | . . . . . . . 8 | |
50 | 49 | dcbid 828 | . . . . . . 7 DECID DECID |
51 | 48, 50 | rspc2va 2844 | . . . . . 6 DECID DECID |
52 | 12, 45, 46, 51 | syl21anc 1227 | . . . . 5 DECID |
53 | exmiddc 826 | . . . . 5 DECID | |
54 | 52, 53 | syl 14 | . . . 4 |
55 | 54 | adantr 274 | . . 3 |
56 | 32, 42, 55 | mpjaodan 788 | . 2 |
57 | fidcenumlemrks.h | . 2 | |
58 | 10, 56, 57 | mpjaodan 788 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 wceq 1343 wcel 2136 wral 2444 cun 3114 wss 3116 csn 3576 csuc 4343 com 4567 cima 4607 wfn 5183 wf 5184 wfo 5186 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 |
This theorem is referenced by: fidcenumlemrk 6919 |
Copyright terms: Public domain | W3C validator |