ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenumlemrks Unicode version

Theorem fidcenumlemrks 6849
Description: Lemma for fidcenum 6852. Induction step for fidcenumlemrk 6850. (Contributed by Jim Kingdon, 20-Oct-2022.)
Hypotheses
Ref Expression
fidcenumlemr.dc  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
fidcenumlemr.f  |-  ( ph  ->  F : N -onto-> A
)
fidcenumlemrks.j  |-  ( ph  ->  J  e.  om )
fidcenumlemrks.jn  |-  ( ph  ->  suc  J  C_  N
)
fidcenumlemrks.h  |-  ( ph  ->  ( X  e.  ( F " J )  \/  -.  X  e.  ( F " J
) ) )
fidcenumlemrks.x  |-  ( ph  ->  X  e.  A )
Assertion
Ref Expression
fidcenumlemrks  |-  ( ph  ->  ( X  e.  ( F " suc  J
)  \/  -.  X  e.  ( F " suc  J ) ) )
Distinct variable groups:    x, A, y   
y, F    y, J    x, X, y
Allowed substitution hints:    ph( x, y)    F( x)    J( x)    N( x, y)

Proof of Theorem fidcenumlemrks
StepHypRef Expression
1 simpr 109 . . . . 5  |-  ( (
ph  /\  X  e.  ( F " J ) )  ->  X  e.  ( F " J ) )
2 elun1 3248 . . . . 5  |-  ( X  e.  ( F " J )  ->  X  e.  ( ( F " J )  u.  ( F " { J }
) ) )
31, 2syl 14 . . . 4  |-  ( (
ph  /\  X  e.  ( F " J ) )  ->  X  e.  ( ( F " J )  u.  ( F " { J }
) ) )
4 df-suc 4301 . . . . . . 7  |-  suc  J  =  ( J  u.  { J } )
54imaeq2i 4887 . . . . . 6  |-  ( F
" suc  J )  =  ( F "
( J  u.  { J } ) )
6 imaundi 4959 . . . . . 6  |-  ( F
" ( J  u.  { J } ) )  =  ( ( F
" J )  u.  ( F " { J } ) )
75, 6eqtri 2161 . . . . 5  |-  ( F
" suc  J )  =  ( ( F
" J )  u.  ( F " { J } ) )
87eleq2i 2207 . . . 4  |-  ( X  e.  ( F " suc  J )  <->  X  e.  ( ( F " J )  u.  ( F " { J }
) ) )
93, 8sylibr 133 . . 3  |-  ( (
ph  /\  X  e.  ( F " J ) )  ->  X  e.  ( F " suc  J
) )
109orcd 723 . 2  |-  ( (
ph  /\  X  e.  ( F " J ) )  ->  ( X  e.  ( F " suc  J )  \/  -.  X  e.  ( F " suc  J ) ) )
11 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  X  =  ( F `  J ) )  ->  X  =  ( F `  J ) )
12 fidcenumlemrks.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  A )
13 elsng 3547 . . . . . . . . . 10  |-  ( X  e.  A  ->  ( X  e.  { ( F `  J ) } 
<->  X  =  ( F `
 J ) ) )
1412, 13syl 14 . . . . . . . . 9  |-  ( ph  ->  ( X  e.  {
( F `  J
) }  <->  X  =  ( F `  J ) ) )
15 fidcenumlemr.f . . . . . . . . . . . 12  |-  ( ph  ->  F : N -onto-> A
)
16 fofn 5355 . . . . . . . . . . . 12  |-  ( F : N -onto-> A  ->  F  Fn  N )
1715, 16syl 14 . . . . . . . . . . 11  |-  ( ph  ->  F  Fn  N )
18 fidcenumlemrks.jn . . . . . . . . . . . 12  |-  ( ph  ->  suc  J  C_  N
)
19 fidcenumlemrks.j . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  om )
20 sucidg 4346 . . . . . . . . . . . . 13  |-  ( J  e.  om  ->  J  e.  suc  J )
2119, 20syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  suc  J
)
2218, 21sseldd 3103 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  N )
23 fnsnfv 5488 . . . . . . . . . . 11  |-  ( ( F  Fn  N  /\  J  e.  N )  ->  { ( F `  J ) }  =  ( F " { J } ) )
2417, 22, 23syl2anc 409 . . . . . . . . . 10  |-  ( ph  ->  { ( F `  J ) }  =  ( F " { J } ) )
2524eleq2d 2210 . . . . . . . . 9  |-  ( ph  ->  ( X  e.  {
( F `  J
) }  <->  X  e.  ( F " { J } ) ) )
2614, 25bitr3d 189 . . . . . . . 8  |-  ( ph  ->  ( X  =  ( F `  J )  <-> 
X  e.  ( F
" { J }
) ) )
2726ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  X  =  ( F `  J ) )  -> 
( X  =  ( F `  J )  <-> 
X  e.  ( F
" { J }
) ) )
2811, 27mpbid 146 . . . . . 6  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  X  =  ( F `  J ) )  ->  X  e.  ( F " { J } ) )
29 elun2 3249 . . . . . 6  |-  ( X  e.  ( F " { J } )  ->  X  e.  ( ( F " J )  u.  ( F " { J } ) ) )
3028, 29syl 14 . . . . 5  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  X  =  ( F `  J ) )  ->  X  e.  ( ( F " J )  u.  ( F " { J } ) ) )
3130, 8sylibr 133 . . . 4  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  X  =  ( F `  J ) )  ->  X  e.  ( F " suc  J ) )
3231orcd 723 . . 3  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  X  =  ( F `  J ) )  -> 
( X  e.  ( F " suc  J
)  \/  -.  X  e.  ( F " suc  J ) ) )
33 simplr 520 . . . . . . 7  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  -.  X  e.  ( F " J
) )
34 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  -.  X  =  ( F `  J ) )
3526ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  ( X  =  ( F `  J )  <->  X  e.  ( F " { J } ) ) )
3634, 35mtbid 662 . . . . . . 7  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  -.  X  e.  ( F " { J } ) )
37 ioran 742 . . . . . . 7  |-  ( -.  ( X  e.  ( F " J )  \/  X  e.  ( F " { J } ) )  <->  ( -.  X  e.  ( F " J )  /\  -.  X  e.  ( F " { J } ) ) )
3833, 36, 37sylanbrc 414 . . . . . 6  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  -.  ( X  e.  ( F " J )  \/  X  e.  ( F " { J } ) ) )
39 elun 3222 . . . . . 6  |-  ( X  e.  ( ( F
" J )  u.  ( F " { J } ) )  <->  ( X  e.  ( F " J
)  \/  X  e.  ( F " { J } ) ) )
4038, 39sylnibr 667 . . . . 5  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  -.  X  e.  ( ( F " J )  u.  ( F " { J }
) ) )
4140, 8sylnibr 667 . . . 4  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  -.  X  e.  ( F " suc  J ) )
4241olcd 724 . . 3  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  ( X  e.  ( F " suc  J )  \/  -.  X  e.  ( F " suc  J ) ) )
43 fof 5353 . . . . . . . 8  |-  ( F : N -onto-> A  ->  F : N --> A )
4415, 43syl 14 . . . . . . 7  |-  ( ph  ->  F : N --> A )
4544, 22ffvelrnd 5564 . . . . . 6  |-  ( ph  ->  ( F `  J
)  e.  A )
46 fidcenumlemr.dc . . . . . 6  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
47 eqeq1 2147 . . . . . . . 8  |-  ( x  =  X  ->  (
x  =  y  <->  X  =  y ) )
4847dcbid 824 . . . . . . 7  |-  ( x  =  X  ->  (DECID  x  =  y  <-> DECID  X  =  y )
)
49 eqeq2 2150 . . . . . . . 8  |-  ( y  =  ( F `  J )  ->  ( X  =  y  <->  X  =  ( F `  J ) ) )
5049dcbid 824 . . . . . . 7  |-  ( y  =  ( F `  J )  ->  (DECID  X  =  y  <-> DECID  X  =  ( F `  J ) ) )
5148, 50rspc2va 2807 . . . . . 6  |-  ( ( ( X  e.  A  /\  ( F `  J
)  e.  A )  /\  A. x  e.  A  A. y  e.  A DECID  x  =  y )  -> DECID 
X  =  ( F `
 J ) )
5212, 45, 46, 51syl21anc 1216 . . . . 5  |-  ( ph  -> DECID  X  =  ( F `  J ) )
53 exmiddc 822 . . . . 5  |-  (DECID  X  =  ( F `  J
)  ->  ( X  =  ( F `  J )  \/  -.  X  =  ( F `  J ) ) )
5452, 53syl 14 . . . 4  |-  ( ph  ->  ( X  =  ( F `  J )  \/  -.  X  =  ( F `  J
) ) )
5554adantr 274 . . 3  |-  ( (
ph  /\  -.  X  e.  ( F " J
) )  ->  ( X  =  ( F `  J )  \/  -.  X  =  ( F `  J ) ) )
5632, 42, 55mpjaodan 788 . 2  |-  ( (
ph  /\  -.  X  e.  ( F " J
) )  ->  ( X  e.  ( F " suc  J )  \/ 
-.  X  e.  ( F " suc  J
) ) )
57 fidcenumlemrks.h . 2  |-  ( ph  ->  ( X  e.  ( F " J )  \/  -.  X  e.  ( F " J
) ) )
5810, 56, 57mpjaodan 788 1  |-  ( ph  ->  ( X  e.  ( F " suc  J
)  \/  -.  X  e.  ( F " suc  J ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    = wceq 1332    e. wcel 1481   A.wral 2417    u. cun 3074    C_ wss 3076   {csn 3532   suc csuc 4295   omcom 4512   "cima 4550    Fn wfn 5126   -->wf 5127   -onto->wfo 5129   ` cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fo 5137  df-fv 5139
This theorem is referenced by:  fidcenumlemrk  6850
  Copyright terms: Public domain W3C validator