Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fidcenumlemrks | Unicode version |
Description: Lemma for fidcenum 6933. Induction step for fidcenumlemrk 6931. (Contributed by Jim Kingdon, 20-Oct-2022.) |
Ref | Expression |
---|---|
fidcenumlemr.dc | DECID |
fidcenumlemr.f | |
fidcenumlemrks.j | |
fidcenumlemrks.jn | |
fidcenumlemrks.h | |
fidcenumlemrks.x |
Ref | Expression |
---|---|
fidcenumlemrks |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 | |
2 | elun1 3294 | . . . . 5 | |
3 | 1, 2 | syl 14 | . . . 4 |
4 | df-suc 4356 | . . . . . . 7 | |
5 | 4 | imaeq2i 4951 | . . . . . 6 |
6 | imaundi 5023 | . . . . . 6 | |
7 | 5, 6 | eqtri 2191 | . . . . 5 |
8 | 7 | eleq2i 2237 | . . . 4 |
9 | 3, 8 | sylibr 133 | . . 3 |
10 | 9 | orcd 728 | . 2 |
11 | simpr 109 | . . . . . . 7 | |
12 | fidcenumlemrks.x | . . . . . . . . . 10 | |
13 | elsng 3598 | . . . . . . . . . 10 | |
14 | 12, 13 | syl 14 | . . . . . . . . 9 |
15 | fidcenumlemr.f | . . . . . . . . . . . 12 | |
16 | fofn 5422 | . . . . . . . . . . . 12 | |
17 | 15, 16 | syl 14 | . . . . . . . . . . 11 |
18 | fidcenumlemrks.jn | . . . . . . . . . . . 12 | |
19 | fidcenumlemrks.j | . . . . . . . . . . . . 13 | |
20 | sucidg 4401 | . . . . . . . . . . . . 13 | |
21 | 19, 20 | syl 14 | . . . . . . . . . . . 12 |
22 | 18, 21 | sseldd 3148 | . . . . . . . . . . 11 |
23 | fnsnfv 5555 | . . . . . . . . . . 11 | |
24 | 17, 22, 23 | syl2anc 409 | . . . . . . . . . 10 |
25 | 24 | eleq2d 2240 | . . . . . . . . 9 |
26 | 14, 25 | bitr3d 189 | . . . . . . . 8 |
27 | 26 | ad2antrr 485 | . . . . . . 7 |
28 | 11, 27 | mpbid 146 | . . . . . 6 |
29 | elun2 3295 | . . . . . 6 | |
30 | 28, 29 | syl 14 | . . . . 5 |
31 | 30, 8 | sylibr 133 | . . . 4 |
32 | 31 | orcd 728 | . . 3 |
33 | simplr 525 | . . . . . . 7 | |
34 | simpr 109 | . . . . . . . 8 | |
35 | 26 | ad2antrr 485 | . . . . . . . 8 |
36 | 34, 35 | mtbid 667 | . . . . . . 7 |
37 | ioran 747 | . . . . . . 7 | |
38 | 33, 36, 37 | sylanbrc 415 | . . . . . 6 |
39 | elun 3268 | . . . . . 6 | |
40 | 38, 39 | sylnibr 672 | . . . . 5 |
41 | 40, 8 | sylnibr 672 | . . . 4 |
42 | 41 | olcd 729 | . . 3 |
43 | fof 5420 | . . . . . . . 8 | |
44 | 15, 43 | syl 14 | . . . . . . 7 |
45 | 44, 22 | ffvelrnd 5632 | . . . . . 6 |
46 | fidcenumlemr.dc | . . . . . 6 DECID | |
47 | eqeq1 2177 | . . . . . . . 8 | |
48 | 47 | dcbid 833 | . . . . . . 7 DECID DECID |
49 | eqeq2 2180 | . . . . . . . 8 | |
50 | 49 | dcbid 833 | . . . . . . 7 DECID DECID |
51 | 48, 50 | rspc2va 2848 | . . . . . 6 DECID DECID |
52 | 12, 45, 46, 51 | syl21anc 1232 | . . . . 5 DECID |
53 | exmiddc 831 | . . . . 5 DECID | |
54 | 52, 53 | syl 14 | . . . 4 |
55 | 54 | adantr 274 | . . 3 |
56 | 32, 42, 55 | mpjaodan 793 | . 2 |
57 | fidcenumlemrks.h | . 2 | |
58 | 10, 56, 57 | mpjaodan 793 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 wceq 1348 wcel 2141 wral 2448 cun 3119 wss 3121 csn 3583 csuc 4350 com 4574 cima 4614 wfn 5193 wf 5194 wfo 5196 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 |
This theorem is referenced by: fidcenumlemrk 6931 |
Copyright terms: Public domain | W3C validator |