ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenumlemrks Unicode version

Theorem fidcenumlemrks 6928
Description: Lemma for fidcenum 6931. Induction step for fidcenumlemrk 6929. (Contributed by Jim Kingdon, 20-Oct-2022.)
Hypotheses
Ref Expression
fidcenumlemr.dc  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
fidcenumlemr.f  |-  ( ph  ->  F : N -onto-> A
)
fidcenumlemrks.j  |-  ( ph  ->  J  e.  om )
fidcenumlemrks.jn  |-  ( ph  ->  suc  J  C_  N
)
fidcenumlemrks.h  |-  ( ph  ->  ( X  e.  ( F " J )  \/  -.  X  e.  ( F " J
) ) )
fidcenumlemrks.x  |-  ( ph  ->  X  e.  A )
Assertion
Ref Expression
fidcenumlemrks  |-  ( ph  ->  ( X  e.  ( F " suc  J
)  \/  -.  X  e.  ( F " suc  J ) ) )
Distinct variable groups:    x, A, y   
y, F    y, J    x, X, y
Allowed substitution hints:    ph( x, y)    F( x)    J( x)    N( x, y)

Proof of Theorem fidcenumlemrks
StepHypRef Expression
1 simpr 109 . . . . 5  |-  ( (
ph  /\  X  e.  ( F " J ) )  ->  X  e.  ( F " J ) )
2 elun1 3294 . . . . 5  |-  ( X  e.  ( F " J )  ->  X  e.  ( ( F " J )  u.  ( F " { J }
) ) )
31, 2syl 14 . . . 4  |-  ( (
ph  /\  X  e.  ( F " J ) )  ->  X  e.  ( ( F " J )  u.  ( F " { J }
) ) )
4 df-suc 4354 . . . . . . 7  |-  suc  J  =  ( J  u.  { J } )
54imaeq2i 4949 . . . . . 6  |-  ( F
" suc  J )  =  ( F "
( J  u.  { J } ) )
6 imaundi 5021 . . . . . 6  |-  ( F
" ( J  u.  { J } ) )  =  ( ( F
" J )  u.  ( F " { J } ) )
75, 6eqtri 2191 . . . . 5  |-  ( F
" suc  J )  =  ( ( F
" J )  u.  ( F " { J } ) )
87eleq2i 2237 . . . 4  |-  ( X  e.  ( F " suc  J )  <->  X  e.  ( ( F " J )  u.  ( F " { J }
) ) )
93, 8sylibr 133 . . 3  |-  ( (
ph  /\  X  e.  ( F " J ) )  ->  X  e.  ( F " suc  J
) )
109orcd 728 . 2  |-  ( (
ph  /\  X  e.  ( F " J ) )  ->  ( X  e.  ( F " suc  J )  \/  -.  X  e.  ( F " suc  J ) ) )
11 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  X  =  ( F `  J ) )  ->  X  =  ( F `  J ) )
12 fidcenumlemrks.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  A )
13 elsng 3596 . . . . . . . . . 10  |-  ( X  e.  A  ->  ( X  e.  { ( F `  J ) } 
<->  X  =  ( F `
 J ) ) )
1412, 13syl 14 . . . . . . . . 9  |-  ( ph  ->  ( X  e.  {
( F `  J
) }  <->  X  =  ( F `  J ) ) )
15 fidcenumlemr.f . . . . . . . . . . . 12  |-  ( ph  ->  F : N -onto-> A
)
16 fofn 5420 . . . . . . . . . . . 12  |-  ( F : N -onto-> A  ->  F  Fn  N )
1715, 16syl 14 . . . . . . . . . . 11  |-  ( ph  ->  F  Fn  N )
18 fidcenumlemrks.jn . . . . . . . . . . . 12  |-  ( ph  ->  suc  J  C_  N
)
19 fidcenumlemrks.j . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  om )
20 sucidg 4399 . . . . . . . . . . . . 13  |-  ( J  e.  om  ->  J  e.  suc  J )
2119, 20syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  suc  J
)
2218, 21sseldd 3148 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  N )
23 fnsnfv 5553 . . . . . . . . . . 11  |-  ( ( F  Fn  N  /\  J  e.  N )  ->  { ( F `  J ) }  =  ( F " { J } ) )
2417, 22, 23syl2anc 409 . . . . . . . . . 10  |-  ( ph  ->  { ( F `  J ) }  =  ( F " { J } ) )
2524eleq2d 2240 . . . . . . . . 9  |-  ( ph  ->  ( X  e.  {
( F `  J
) }  <->  X  e.  ( F " { J } ) ) )
2614, 25bitr3d 189 . . . . . . . 8  |-  ( ph  ->  ( X  =  ( F `  J )  <-> 
X  e.  ( F
" { J }
) ) )
2726ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  X  =  ( F `  J ) )  -> 
( X  =  ( F `  J )  <-> 
X  e.  ( F
" { J }
) ) )
2811, 27mpbid 146 . . . . . 6  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  X  =  ( F `  J ) )  ->  X  e.  ( F " { J } ) )
29 elun2 3295 . . . . . 6  |-  ( X  e.  ( F " { J } )  ->  X  e.  ( ( F " J )  u.  ( F " { J } ) ) )
3028, 29syl 14 . . . . 5  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  X  =  ( F `  J ) )  ->  X  e.  ( ( F " J )  u.  ( F " { J } ) ) )
3130, 8sylibr 133 . . . 4  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  X  =  ( F `  J ) )  ->  X  e.  ( F " suc  J ) )
3231orcd 728 . . 3  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  X  =  ( F `  J ) )  -> 
( X  e.  ( F " suc  J
)  \/  -.  X  e.  ( F " suc  J ) ) )
33 simplr 525 . . . . . . 7  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  -.  X  e.  ( F " J
) )
34 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  -.  X  =  ( F `  J ) )
3526ad2antrr 485 . . . . . . . 8  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  ( X  =  ( F `  J )  <->  X  e.  ( F " { J } ) ) )
3634, 35mtbid 667 . . . . . . 7  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  -.  X  e.  ( F " { J } ) )
37 ioran 747 . . . . . . 7  |-  ( -.  ( X  e.  ( F " J )  \/  X  e.  ( F " { J } ) )  <->  ( -.  X  e.  ( F " J )  /\  -.  X  e.  ( F " { J } ) ) )
3833, 36, 37sylanbrc 415 . . . . . 6  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  -.  ( X  e.  ( F " J )  \/  X  e.  ( F " { J } ) ) )
39 elun 3268 . . . . . 6  |-  ( X  e.  ( ( F
" J )  u.  ( F " { J } ) )  <->  ( X  e.  ( F " J
)  \/  X  e.  ( F " { J } ) ) )
4038, 39sylnibr 672 . . . . 5  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  -.  X  e.  ( ( F " J )  u.  ( F " { J }
) ) )
4140, 8sylnibr 672 . . . 4  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  -.  X  e.  ( F " suc  J ) )
4241olcd 729 . . 3  |-  ( ( ( ph  /\  -.  X  e.  ( F " J ) )  /\  -.  X  =  ( F `  J )
)  ->  ( X  e.  ( F " suc  J )  \/  -.  X  e.  ( F " suc  J ) ) )
43 fof 5418 . . . . . . . 8  |-  ( F : N -onto-> A  ->  F : N --> A )
4415, 43syl 14 . . . . . . 7  |-  ( ph  ->  F : N --> A )
4544, 22ffvelrnd 5630 . . . . . 6  |-  ( ph  ->  ( F `  J
)  e.  A )
46 fidcenumlemr.dc . . . . . 6  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
47 eqeq1 2177 . . . . . . . 8  |-  ( x  =  X  ->  (
x  =  y  <->  X  =  y ) )
4847dcbid 833 . . . . . . 7  |-  ( x  =  X  ->  (DECID  x  =  y  <-> DECID  X  =  y )
)
49 eqeq2 2180 . . . . . . . 8  |-  ( y  =  ( F `  J )  ->  ( X  =  y  <->  X  =  ( F `  J ) ) )
5049dcbid 833 . . . . . . 7  |-  ( y  =  ( F `  J )  ->  (DECID  X  =  y  <-> DECID  X  =  ( F `  J ) ) )
5148, 50rspc2va 2848 . . . . . 6  |-  ( ( ( X  e.  A  /\  ( F `  J
)  e.  A )  /\  A. x  e.  A  A. y  e.  A DECID  x  =  y )  -> DECID 
X  =  ( F `
 J ) )
5212, 45, 46, 51syl21anc 1232 . . . . 5  |-  ( ph  -> DECID  X  =  ( F `  J ) )
53 exmiddc 831 . . . . 5  |-  (DECID  X  =  ( F `  J
)  ->  ( X  =  ( F `  J )  \/  -.  X  =  ( F `  J ) ) )
5452, 53syl 14 . . . 4  |-  ( ph  ->  ( X  =  ( F `  J )  \/  -.  X  =  ( F `  J
) ) )
5554adantr 274 . . 3  |-  ( (
ph  /\  -.  X  e.  ( F " J
) )  ->  ( X  =  ( F `  J )  \/  -.  X  =  ( F `  J ) ) )
5632, 42, 55mpjaodan 793 . 2  |-  ( (
ph  /\  -.  X  e.  ( F " J
) )  ->  ( X  e.  ( F " suc  J )  \/ 
-.  X  e.  ( F " suc  J
) ) )
57 fidcenumlemrks.h . 2  |-  ( ph  ->  ( X  e.  ( F " J )  \/  -.  X  e.  ( F " J
) ) )
5810, 56, 57mpjaodan 793 1  |-  ( ph  ->  ( X  e.  ( F " suc  J
)  \/  -.  X  e.  ( F " suc  J ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141   A.wral 2448    u. cun 3119    C_ wss 3121   {csn 3581   suc csuc 4348   omcom 4572   "cima 4612    Fn wfn 5191   -->wf 5192   -onto->wfo 5194   ` cfv 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-suc 4354  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fo 5202  df-fv 5204
This theorem is referenced by:  fidcenumlemrk  6929
  Copyright terms: Public domain W3C validator