| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fidcenumlemrks | Unicode version | ||
| Description: Lemma for fidcenum 7131. Induction step for fidcenumlemrk 7129. (Contributed by Jim Kingdon, 20-Oct-2022.) |
| Ref | Expression |
|---|---|
| fidcenumlemr.dc |
|
| fidcenumlemr.f |
|
| fidcenumlemrks.j |
|
| fidcenumlemrks.jn |
|
| fidcenumlemrks.h |
|
| fidcenumlemrks.x |
|
| Ref | Expression |
|---|---|
| fidcenumlemrks |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . 5
| |
| 2 | elun1 3371 |
. . . . 5
| |
| 3 | 1, 2 | syl 14 |
. . . 4
|
| 4 | df-suc 4462 |
. . . . . . 7
| |
| 5 | 4 | imaeq2i 5066 |
. . . . . 6
|
| 6 | imaundi 5141 |
. . . . . 6
| |
| 7 | 5, 6 | eqtri 2250 |
. . . . 5
|
| 8 | 7 | eleq2i 2296 |
. . . 4
|
| 9 | 3, 8 | sylibr 134 |
. . 3
|
| 10 | 9 | orcd 738 |
. 2
|
| 11 | simpr 110 |
. . . . . . 7
| |
| 12 | fidcenumlemrks.x |
. . . . . . . . . 10
| |
| 13 | elsng 3681 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | syl 14 |
. . . . . . . . 9
|
| 15 | fidcenumlemr.f |
. . . . . . . . . . . 12
| |
| 16 | fofn 5552 |
. . . . . . . . . . . 12
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . . . . 11
|
| 18 | fidcenumlemrks.jn |
. . . . . . . . . . . 12
| |
| 19 | fidcenumlemrks.j |
. . . . . . . . . . . . 13
| |
| 20 | sucidg 4507 |
. . . . . . . . . . . . 13
| |
| 21 | 19, 20 | syl 14 |
. . . . . . . . . . . 12
|
| 22 | 18, 21 | sseldd 3225 |
. . . . . . . . . . 11
|
| 23 | fnsnfv 5695 |
. . . . . . . . . . 11
| |
| 24 | 17, 22, 23 | syl2anc 411 |
. . . . . . . . . 10
|
| 25 | 24 | eleq2d 2299 |
. . . . . . . . 9
|
| 26 | 14, 25 | bitr3d 190 |
. . . . . . . 8
|
| 27 | 26 | ad2antrr 488 |
. . . . . . 7
|
| 28 | 11, 27 | mpbid 147 |
. . . . . 6
|
| 29 | elun2 3372 |
. . . . . 6
| |
| 30 | 28, 29 | syl 14 |
. . . . 5
|
| 31 | 30, 8 | sylibr 134 |
. . . 4
|
| 32 | 31 | orcd 738 |
. . 3
|
| 33 | simplr 528 |
. . . . . . 7
| |
| 34 | simpr 110 |
. . . . . . . 8
| |
| 35 | 26 | ad2antrr 488 |
. . . . . . . 8
|
| 36 | 34, 35 | mtbid 676 |
. . . . . . 7
|
| 37 | ioran 757 |
. . . . . . 7
| |
| 38 | 33, 36, 37 | sylanbrc 417 |
. . . . . 6
|
| 39 | elun 3345 |
. . . . . 6
| |
| 40 | 38, 39 | sylnibr 681 |
. . . . 5
|
| 41 | 40, 8 | sylnibr 681 |
. . . 4
|
| 42 | 41 | olcd 739 |
. . 3
|
| 43 | fof 5550 |
. . . . . . . 8
| |
| 44 | 15, 43 | syl 14 |
. . . . . . 7
|
| 45 | 44, 22 | ffvelcdmd 5773 |
. . . . . 6
|
| 46 | fidcenumlemr.dc |
. . . . . 6
| |
| 47 | eqeq1 2236 |
. . . . . . . 8
| |
| 48 | 47 | dcbid 843 |
. . . . . . 7
|
| 49 | eqeq2 2239 |
. . . . . . . 8
| |
| 50 | 49 | dcbid 843 |
. . . . . . 7
|
| 51 | 48, 50 | rspc2va 2921 |
. . . . . 6
|
| 52 | 12, 45, 46, 51 | syl21anc 1270 |
. . . . 5
|
| 53 | exmiddc 841 |
. . . . 5
| |
| 54 | 52, 53 | syl 14 |
. . . 4
|
| 55 | 54 | adantr 276 |
. . 3
|
| 56 | 32, 42, 55 | mpjaodan 803 |
. 2
|
| 57 | fidcenumlemrks.h |
. 2
| |
| 58 | 10, 56, 57 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 |
| This theorem is referenced by: fidcenumlemrk 7129 |
| Copyright terms: Public domain | W3C validator |