ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resunimafz0 Unicode version

Theorem resunimafz0 10351
Description: The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
resunimafz0.i  |-  ( ph  ->  Fun  I )
resunimafz0.f  |-  ( ph  ->  F : ( 0..^ ( `  F )
) --> dom  I )
resunimafz0.n  |-  ( ph  ->  N  e.  ( 0..^ ( `  F )
) )
Assertion
Ref Expression
resunimafz0  |-  ( ph  ->  ( I  |`  ( F " ( 0 ... N ) ) )  =  ( ( I  |`  ( F " (
0..^ N ) ) )  u.  { <. ( F `  N ) ,  ( I `  ( F `  N ) ) >. } ) )

Proof of Theorem resunimafz0
StepHypRef Expression
1 imaundi 4877 . . . . 5  |-  ( F
" ( ( 0..^ N )  u.  { N } ) )  =  ( ( F "
( 0..^ N ) )  u.  ( F
" { N }
) )
2 resunimafz0.n . . . . . . . . 9  |-  ( ph  ->  N  e.  ( 0..^ ( `  F )
) )
3 elfzonn0 9746 . . . . . . . . 9  |-  ( N  e.  ( 0..^ ( `  F ) )  ->  N  e.  NN0 )
42, 3syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
5 elnn0uz 9155 . . . . . . . 8  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )
64, 5sylib 121 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
7 fzisfzounsn 9796 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( 0 ... N )  =  ( ( 0..^ N )  u.  { N } ) )
86, 7syl 14 . . . . . 6  |-  ( ph  ->  ( 0 ... N
)  =  ( ( 0..^ N )  u. 
{ N } ) )
98imaeq2d 4807 . . . . 5  |-  ( ph  ->  ( F " (
0 ... N ) )  =  ( F "
( ( 0..^ N )  u.  { N } ) ) )
10 resunimafz0.f . . . . . . . 8  |-  ( ph  ->  F : ( 0..^ ( `  F )
) --> dom  I )
1110ffnd 5196 . . . . . . 7  |-  ( ph  ->  F  Fn  ( 0..^ ( `  F )
) )
12 fnsnfv 5398 . . . . . . 7  |-  ( ( F  Fn  ( 0..^ ( `  F )
)  /\  N  e.  ( 0..^ ( `  F
) ) )  ->  { ( F `  N ) }  =  ( F " { N } ) )
1311, 2, 12syl2anc 404 . . . . . 6  |-  ( ph  ->  { ( F `  N ) }  =  ( F " { N } ) )
1413uneq2d 3169 . . . . 5  |-  ( ph  ->  ( ( F "
( 0..^ N ) )  u.  { ( F `  N ) } )  =  ( ( F " (
0..^ N ) )  u.  ( F " { N } ) ) )
151, 9, 143eqtr4a 2153 . . . 4  |-  ( ph  ->  ( F " (
0 ... N ) )  =  ( ( F
" ( 0..^ N ) )  u.  {
( F `  N
) } ) )
1615reseq2d 4745 . . 3  |-  ( ph  ->  ( I  |`  ( F " ( 0 ... N ) ) )  =  ( I  |`  ( ( F "
( 0..^ N ) )  u.  { ( F `  N ) } ) ) )
17 resundi 4758 . . 3  |-  ( I  |`  ( ( F "
( 0..^ N ) )  u.  { ( F `  N ) } ) )  =  ( ( I  |`  ( F " ( 0..^ N ) ) )  u.  ( I  |`  { ( F `  N ) } ) )
1816, 17syl6eq 2143 . 2  |-  ( ph  ->  ( I  |`  ( F " ( 0 ... N ) ) )  =  ( ( I  |`  ( F " (
0..^ N ) ) )  u.  ( I  |`  { ( F `  N ) } ) ) )
19 resunimafz0.i . . . . 5  |-  ( ph  ->  Fun  I )
20 funfn 5079 . . . . 5  |-  ( Fun  I  <->  I  Fn  dom  I )
2119, 20sylib 121 . . . 4  |-  ( ph  ->  I  Fn  dom  I
)
2210, 2ffvelrnd 5474 . . . 4  |-  ( ph  ->  ( F `  N
)  e.  dom  I
)
23 fnressn 5522 . . . 4  |-  ( ( I  Fn  dom  I  /\  ( F `  N
)  e.  dom  I
)  ->  ( I  |` 
{ ( F `  N ) } )  =  { <. ( F `  N ) ,  ( I `  ( F `  N ) ) >. } )
2421, 22, 23syl2anc 404 . . 3  |-  ( ph  ->  ( I  |`  { ( F `  N ) } )  =  { <. ( F `  N
) ,  ( I `
 ( F `  N ) ) >. } )
2524uneq2d 3169 . 2  |-  ( ph  ->  ( ( I  |`  ( F " ( 0..^ N ) ) )  u.  ( I  |`  { ( F `  N ) } ) )  =  ( ( I  |`  ( F " ( 0..^ N ) ) )  u.  { <. ( F `  N
) ,  ( I `
 ( F `  N ) ) >. } ) )
2618, 25eqtrd 2127 1  |-  ( ph  ->  ( I  |`  ( F " ( 0 ... N ) ) )  =  ( ( I  |`  ( F " (
0..^ N ) ) )  u.  { <. ( F `  N ) ,  ( I `  ( F `  N ) ) >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1296    e. wcel 1445    u. cun 3011   {csn 3466   <.cop 3469   dom cdm 4467    |` cres 4469   "cima 4470   Fun wfun 5043    Fn wfn 5044   -->wf 5045   ` cfv 5049  (class class class)co 5690   0cc0 7447   NN0cn0 8771   ZZ>=cuz 9118   ...cfz 9573  ..^cfzo 9702  ♯chash 10298
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119  df-fz 9574  df-fzo 9703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator