ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resunimafz0 Unicode version

Theorem resunimafz0 11053
Description: The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
resunimafz0.i  |-  ( ph  ->  Fun  I )
resunimafz0.f  |-  ( ph  ->  F : ( 0..^ ( `  F )
) --> dom  I )
resunimafz0.n  |-  ( ph  ->  N  e.  ( 0..^ ( `  F )
) )
Assertion
Ref Expression
resunimafz0  |-  ( ph  ->  ( I  |`  ( F " ( 0 ... N ) ) )  =  ( ( I  |`  ( F " (
0..^ N ) ) )  u.  { <. ( F `  N ) ,  ( I `  ( F `  N ) ) >. } ) )

Proof of Theorem resunimafz0
StepHypRef Expression
1 imaundi 5141 . . . . 5  |-  ( F
" ( ( 0..^ N )  u.  { N } ) )  =  ( ( F "
( 0..^ N ) )  u.  ( F
" { N }
) )
2 resunimafz0.n . . . . . . . . 9  |-  ( ph  ->  N  e.  ( 0..^ ( `  F )
) )
3 elfzonn0 10386 . . . . . . . . 9  |-  ( N  e.  ( 0..^ ( `  F ) )  ->  N  e.  NN0 )
42, 3syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
5 elnn0uz 9760 . . . . . . . 8  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )
64, 5sylib 122 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
7 fzisfzounsn 10442 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( 0 ... N )  =  ( ( 0..^ N )  u.  { N } ) )
86, 7syl 14 . . . . . 6  |-  ( ph  ->  ( 0 ... N
)  =  ( ( 0..^ N )  u. 
{ N } ) )
98imaeq2d 5068 . . . . 5  |-  ( ph  ->  ( F " (
0 ... N ) )  =  ( F "
( ( 0..^ N )  u.  { N } ) ) )
10 resunimafz0.f . . . . . . . 8  |-  ( ph  ->  F : ( 0..^ ( `  F )
) --> dom  I )
1110ffnd 5474 . . . . . . 7  |-  ( ph  ->  F  Fn  ( 0..^ ( `  F )
) )
12 fnsnfv 5693 . . . . . . 7  |-  ( ( F  Fn  ( 0..^ ( `  F )
)  /\  N  e.  ( 0..^ ( `  F
) ) )  ->  { ( F `  N ) }  =  ( F " { N } ) )
1311, 2, 12syl2anc 411 . . . . . 6  |-  ( ph  ->  { ( F `  N ) }  =  ( F " { N } ) )
1413uneq2d 3358 . . . . 5  |-  ( ph  ->  ( ( F "
( 0..^ N ) )  u.  { ( F `  N ) } )  =  ( ( F " (
0..^ N ) )  u.  ( F " { N } ) ) )
151, 9, 143eqtr4a 2288 . . . 4  |-  ( ph  ->  ( F " (
0 ... N ) )  =  ( ( F
" ( 0..^ N ) )  u.  {
( F `  N
) } ) )
1615reseq2d 5005 . . 3  |-  ( ph  ->  ( I  |`  ( F " ( 0 ... N ) ) )  =  ( I  |`  ( ( F "
( 0..^ N ) )  u.  { ( F `  N ) } ) ) )
17 resundi 5018 . . 3  |-  ( I  |`  ( ( F "
( 0..^ N ) )  u.  { ( F `  N ) } ) )  =  ( ( I  |`  ( F " ( 0..^ N ) ) )  u.  ( I  |`  { ( F `  N ) } ) )
1816, 17eqtrdi 2278 . 2  |-  ( ph  ->  ( I  |`  ( F " ( 0 ... N ) ) )  =  ( ( I  |`  ( F " (
0..^ N ) ) )  u.  ( I  |`  { ( F `  N ) } ) ) )
19 resunimafz0.i . . . . 5  |-  ( ph  ->  Fun  I )
20 funfn 5348 . . . . 5  |-  ( Fun  I  <->  I  Fn  dom  I )
2119, 20sylib 122 . . . 4  |-  ( ph  ->  I  Fn  dom  I
)
2210, 2ffvelcdmd 5771 . . . 4  |-  ( ph  ->  ( F `  N
)  e.  dom  I
)
23 fnressn 5825 . . . 4  |-  ( ( I  Fn  dom  I  /\  ( F `  N
)  e.  dom  I
)  ->  ( I  |` 
{ ( F `  N ) } )  =  { <. ( F `  N ) ,  ( I `  ( F `  N ) ) >. } )
2421, 22, 23syl2anc 411 . . 3  |-  ( ph  ->  ( I  |`  { ( F `  N ) } )  =  { <. ( F `  N
) ,  ( I `
 ( F `  N ) ) >. } )
2524uneq2d 3358 . 2  |-  ( ph  ->  ( ( I  |`  ( F " ( 0..^ N ) ) )  u.  ( I  |`  { ( F `  N ) } ) )  =  ( ( I  |`  ( F " ( 0..^ N ) ) )  u.  { <. ( F `  N
) ,  ( I `
 ( F `  N ) ) >. } ) )
2618, 25eqtrd 2262 1  |-  ( ph  ->  ( I  |`  ( F " ( 0 ... N ) ) )  =  ( ( I  |`  ( F " (
0..^ N ) ) )  u.  { <. ( F `  N ) ,  ( I `  ( F `  N ) ) >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200    u. cun 3195   {csn 3666   <.cop 3669   dom cdm 4719    |` cres 4721   "cima 4722   Fun wfun 5312    Fn wfn 5313   -->wf 5314   ` cfv 5318  (class class class)co 6001   0cc0 7999   NN0cn0 9369   ZZ>=cuz 9722   ...cfz 10204  ..^cfzo 10338  ♯chash 10997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator