ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resunimafz0 Unicode version

Theorem resunimafz0 11013
Description: The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
resunimafz0.i  |-  ( ph  ->  Fun  I )
resunimafz0.f  |-  ( ph  ->  F : ( 0..^ ( `  F )
) --> dom  I )
resunimafz0.n  |-  ( ph  ->  N  e.  ( 0..^ ( `  F )
) )
Assertion
Ref Expression
resunimafz0  |-  ( ph  ->  ( I  |`  ( F " ( 0 ... N ) ) )  =  ( ( I  |`  ( F " (
0..^ N ) ) )  u.  { <. ( F `  N ) ,  ( I `  ( F `  N ) ) >. } ) )

Proof of Theorem resunimafz0
StepHypRef Expression
1 imaundi 5114 . . . . 5  |-  ( F
" ( ( 0..^ N )  u.  { N } ) )  =  ( ( F "
( 0..^ N ) )  u.  ( F
" { N }
) )
2 resunimafz0.n . . . . . . . . 9  |-  ( ph  ->  N  e.  ( 0..^ ( `  F )
) )
3 elfzonn0 10347 . . . . . . . . 9  |-  ( N  e.  ( 0..^ ( `  F ) )  ->  N  e.  NN0 )
42, 3syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
5 elnn0uz 9721 . . . . . . . 8  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )
64, 5sylib 122 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
7 fzisfzounsn 10402 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( 0 ... N )  =  ( ( 0..^ N )  u.  { N } ) )
86, 7syl 14 . . . . . 6  |-  ( ph  ->  ( 0 ... N
)  =  ( ( 0..^ N )  u. 
{ N } ) )
98imaeq2d 5041 . . . . 5  |-  ( ph  ->  ( F " (
0 ... N ) )  =  ( F "
( ( 0..^ N )  u.  { N } ) ) )
10 resunimafz0.f . . . . . . . 8  |-  ( ph  ->  F : ( 0..^ ( `  F )
) --> dom  I )
1110ffnd 5446 . . . . . . 7  |-  ( ph  ->  F  Fn  ( 0..^ ( `  F )
) )
12 fnsnfv 5661 . . . . . . 7  |-  ( ( F  Fn  ( 0..^ ( `  F )
)  /\  N  e.  ( 0..^ ( `  F
) ) )  ->  { ( F `  N ) }  =  ( F " { N } ) )
1311, 2, 12syl2anc 411 . . . . . 6  |-  ( ph  ->  { ( F `  N ) }  =  ( F " { N } ) )
1413uneq2d 3335 . . . . 5  |-  ( ph  ->  ( ( F "
( 0..^ N ) )  u.  { ( F `  N ) } )  =  ( ( F " (
0..^ N ) )  u.  ( F " { N } ) ) )
151, 9, 143eqtr4a 2266 . . . 4  |-  ( ph  ->  ( F " (
0 ... N ) )  =  ( ( F
" ( 0..^ N ) )  u.  {
( F `  N
) } ) )
1615reseq2d 4978 . . 3  |-  ( ph  ->  ( I  |`  ( F " ( 0 ... N ) ) )  =  ( I  |`  ( ( F "
( 0..^ N ) )  u.  { ( F `  N ) } ) ) )
17 resundi 4991 . . 3  |-  ( I  |`  ( ( F "
( 0..^ N ) )  u.  { ( F `  N ) } ) )  =  ( ( I  |`  ( F " ( 0..^ N ) ) )  u.  ( I  |`  { ( F `  N ) } ) )
1816, 17eqtrdi 2256 . 2  |-  ( ph  ->  ( I  |`  ( F " ( 0 ... N ) ) )  =  ( ( I  |`  ( F " (
0..^ N ) ) )  u.  ( I  |`  { ( F `  N ) } ) ) )
19 resunimafz0.i . . . . 5  |-  ( ph  ->  Fun  I )
20 funfn 5320 . . . . 5  |-  ( Fun  I  <->  I  Fn  dom  I )
2119, 20sylib 122 . . . 4  |-  ( ph  ->  I  Fn  dom  I
)
2210, 2ffvelcdmd 5739 . . . 4  |-  ( ph  ->  ( F `  N
)  e.  dom  I
)
23 fnressn 5793 . . . 4  |-  ( ( I  Fn  dom  I  /\  ( F `  N
)  e.  dom  I
)  ->  ( I  |` 
{ ( F `  N ) } )  =  { <. ( F `  N ) ,  ( I `  ( F `  N ) ) >. } )
2421, 22, 23syl2anc 411 . . 3  |-  ( ph  ->  ( I  |`  { ( F `  N ) } )  =  { <. ( F `  N
) ,  ( I `
 ( F `  N ) ) >. } )
2524uneq2d 3335 . 2  |-  ( ph  ->  ( ( I  |`  ( F " ( 0..^ N ) ) )  u.  ( I  |`  { ( F `  N ) } ) )  =  ( ( I  |`  ( F " ( 0..^ N ) ) )  u.  { <. ( F `  N
) ,  ( I `
 ( F `  N ) ) >. } ) )
2618, 25eqtrd 2240 1  |-  ( ph  ->  ( I  |`  ( F " ( 0 ... N ) ) )  =  ( ( I  |`  ( F " (
0..^ N ) ) )  u.  { <. ( F `  N ) ,  ( I `  ( F `  N ) ) >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178    u. cun 3172   {csn 3643   <.cop 3646   dom cdm 4693    |` cres 4695   "cima 4696   Fun wfun 5284    Fn wfn 5285   -->wf 5286   ` cfv 5290  (class class class)co 5967   0cc0 7960   NN0cn0 9330   ZZ>=cuz 9683   ...cfz 10165  ..^cfzo 10299  ♯chash 10957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator