ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imbrov2fvoveq Unicode version

Theorem imbrov2fvoveq 5867
Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
Hypothesis
Ref Expression
imbrov2fvoveq.1  |-  ( X  =  Y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
imbrov2fvoveq  |-  ( X  =  Y  ->  (
( ph  ->  ( F `
 ( ( G `
 X )  .x.  O ) ) R A )  <->  ( ps  ->  ( F `  (
( G `  Y
)  .x.  O )
) R A ) ) )

Proof of Theorem imbrov2fvoveq
StepHypRef Expression
1 imbrov2fvoveq.1 . 2  |-  ( X  =  Y  ->  ( ph 
<->  ps ) )
2 fveq2 5486 . . . 4  |-  ( X  =  Y  ->  ( G `  X )  =  ( G `  Y ) )
32fvoveq1d 5864 . . 3  |-  ( X  =  Y  ->  ( F `  ( ( G `  X )  .x.  O ) )  =  ( F `  (
( G `  Y
)  .x.  O )
) )
43breq1d 3992 . 2  |-  ( X  =  Y  ->  (
( F `  (
( G `  X
)  .x.  O )
) R A  <->  ( F `  ( ( G `  Y )  .x.  O
) ) R A ) )
51, 4imbi12d 233 1  |-  ( X  =  Y  ->  (
( ph  ->  ( F `
 ( ( G `
 X )  .x.  O ) ) R A )  <->  ( ps  ->  ( F `  (
( G `  Y
)  .x.  O )
) R A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   class class class wbr 3982   ` cfv 5188  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  cncfco  13218  mulcncflem  13230  ivthinclemlopn  13254  ivthinclemuopn  13256  limcimolemlt  13273  eflt  13336
  Copyright terms: Public domain W3C validator