ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imbrov2fvoveq Unicode version

Theorem imbrov2fvoveq 5943
Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
Hypothesis
Ref Expression
imbrov2fvoveq.1  |-  ( X  =  Y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
imbrov2fvoveq  |-  ( X  =  Y  ->  (
( ph  ->  ( F `
 ( ( G `
 X )  .x.  O ) ) R A )  <->  ( ps  ->  ( F `  (
( G `  Y
)  .x.  O )
) R A ) ) )

Proof of Theorem imbrov2fvoveq
StepHypRef Expression
1 imbrov2fvoveq.1 . 2  |-  ( X  =  Y  ->  ( ph 
<->  ps ) )
2 fveq2 5554 . . . 4  |-  ( X  =  Y  ->  ( G `  X )  =  ( G `  Y ) )
32fvoveq1d 5940 . . 3  |-  ( X  =  Y  ->  ( F `  ( ( G `  X )  .x.  O ) )  =  ( F `  (
( G `  Y
)  .x.  O )
) )
43breq1d 4039 . 2  |-  ( X  =  Y  ->  (
( F `  (
( G `  X
)  .x.  O )
) R A  <->  ( F `  ( ( G `  Y )  .x.  O
) ) R A ) )
51, 4imbi12d 234 1  |-  ( X  =  Y  ->  (
( ph  ->  ( F `
 ( ( G `
 X )  .x.  O ) ) R A )  <->  ( ps  ->  ( F `  (
( G `  Y
)  .x.  O )
) R A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   class class class wbr 4029   ` cfv 5254  (class class class)co 5918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921
This theorem is referenced by:  cncfco  14746  mulcncflem  14761  ivthinclemlopn  14790  ivthinclemuopn  14792  limcimolemlt  14818  eflt  14910
  Copyright terms: Public domain W3C validator