ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imbrov2fvoveq Unicode version

Theorem imbrov2fvoveq 5878
Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
Hypothesis
Ref Expression
imbrov2fvoveq.1  |-  ( X  =  Y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
imbrov2fvoveq  |-  ( X  =  Y  ->  (
( ph  ->  ( F `
 ( ( G `
 X )  .x.  O ) ) R A )  <->  ( ps  ->  ( F `  (
( G `  Y
)  .x.  O )
) R A ) ) )

Proof of Theorem imbrov2fvoveq
StepHypRef Expression
1 imbrov2fvoveq.1 . 2  |-  ( X  =  Y  ->  ( ph 
<->  ps ) )
2 fveq2 5496 . . . 4  |-  ( X  =  Y  ->  ( G `  X )  =  ( G `  Y ) )
32fvoveq1d 5875 . . 3  |-  ( X  =  Y  ->  ( F `  ( ( G `  X )  .x.  O ) )  =  ( F `  (
( G `  Y
)  .x.  O )
) )
43breq1d 3999 . 2  |-  ( X  =  Y  ->  (
( F `  (
( G `  X
)  .x.  O )
) R A  <->  ( F `  ( ( G `  Y )  .x.  O
) ) R A ) )
51, 4imbi12d 233 1  |-  ( X  =  Y  ->  (
( ph  ->  ( F `
 ( ( G `
 X )  .x.  O ) ) R A )  <->  ( ps  ->  ( F `  (
( G `  Y
)  .x.  O )
) R A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   class class class wbr 3989   ` cfv 5198  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  cncfco  13372  mulcncflem  13384  ivthinclemlopn  13408  ivthinclemuopn  13410  limcimolemlt  13427  eflt  13490
  Copyright terms: Public domain W3C validator