ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imbrov2fvoveq Unicode version

Theorem imbrov2fvoveq 5992
Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
Hypothesis
Ref Expression
imbrov2fvoveq.1  |-  ( X  =  Y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
imbrov2fvoveq  |-  ( X  =  Y  ->  (
( ph  ->  ( F `
 ( ( G `
 X )  .x.  O ) ) R A )  <->  ( ps  ->  ( F `  (
( G `  Y
)  .x.  O )
) R A ) ) )

Proof of Theorem imbrov2fvoveq
StepHypRef Expression
1 imbrov2fvoveq.1 . 2  |-  ( X  =  Y  ->  ( ph 
<->  ps ) )
2 fveq2 5599 . . . 4  |-  ( X  =  Y  ->  ( G `  X )  =  ( G `  Y ) )
32fvoveq1d 5989 . . 3  |-  ( X  =  Y  ->  ( F `  ( ( G `  X )  .x.  O ) )  =  ( F `  (
( G `  Y
)  .x.  O )
) )
43breq1d 4069 . 2  |-  ( X  =  Y  ->  (
( F `  (
( G `  X
)  .x.  O )
) R A  <->  ( F `  ( ( G `  Y )  .x.  O
) ) R A ) )
51, 4imbi12d 234 1  |-  ( X  =  Y  ->  (
( ph  ->  ( F `
 ( ( G `
 X )  .x.  O ) ) R A )  <->  ( ps  ->  ( F `  (
( G `  Y
)  .x.  O )
) R A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   class class class wbr 4059   ` cfv 5290  (class class class)co 5967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  cncfco  15178  mulcncflem  15194  ivthinclemlopn  15223  ivthinclemuopn  15225  limcimolemlt  15251  eflt  15362
  Copyright terms: Public domain W3C validator