ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imbrov2fvoveq Unicode version

Theorem imbrov2fvoveq 5969
Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
Hypothesis
Ref Expression
imbrov2fvoveq.1  |-  ( X  =  Y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
imbrov2fvoveq  |-  ( X  =  Y  ->  (
( ph  ->  ( F `
 ( ( G `
 X )  .x.  O ) ) R A )  <->  ( ps  ->  ( F `  (
( G `  Y
)  .x.  O )
) R A ) ) )

Proof of Theorem imbrov2fvoveq
StepHypRef Expression
1 imbrov2fvoveq.1 . 2  |-  ( X  =  Y  ->  ( ph 
<->  ps ) )
2 fveq2 5576 . . . 4  |-  ( X  =  Y  ->  ( G `  X )  =  ( G `  Y ) )
32fvoveq1d 5966 . . 3  |-  ( X  =  Y  ->  ( F `  ( ( G `  X )  .x.  O ) )  =  ( F `  (
( G `  Y
)  .x.  O )
) )
43breq1d 4054 . 2  |-  ( X  =  Y  ->  (
( F `  (
( G `  X
)  .x.  O )
) R A  <->  ( F `  ( ( G `  Y )  .x.  O
) ) R A ) )
51, 4imbi12d 234 1  |-  ( X  =  Y  ->  (
( ph  ->  ( F `
 ( ( G `
 X )  .x.  O ) ) R A )  <->  ( ps  ->  ( F `  (
( G `  Y
)  .x.  O )
) R A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   class class class wbr 4044   ` cfv 5271  (class class class)co 5944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947
This theorem is referenced by:  cncfco  15063  mulcncflem  15079  ivthinclemlopn  15108  ivthinclemuopn  15110  limcimolemlt  15136  eflt  15247
  Copyright terms: Public domain W3C validator