Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imbrov2fvoveq | Unicode version |
Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.) |
Ref | Expression |
---|---|
imbrov2fvoveq.1 |
Ref | Expression |
---|---|
imbrov2fvoveq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbrov2fvoveq.1 | . 2 | |
2 | fveq2 5507 | . . . 4 | |
3 | 2 | fvoveq1d 5887 | . . 3 |
4 | 3 | breq1d 4008 | . 2 |
5 | 1, 4 | imbi12d 234 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wceq 1353 class class class wbr 3998 cfv 5208 (class class class)co 5865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 |
This theorem is referenced by: cncfco 13647 mulcncflem 13659 ivthinclemlopn 13683 ivthinclemuopn 13685 limcimolemlt 13702 eflt 13765 |
Copyright terms: Public domain | W3C validator |