ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovanraleqv Unicode version

Theorem ovanraleqv 5991
Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Hypothesis
Ref Expression
ovanraleqv.1  |-  ( B  =  X  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ovanraleqv  |-  ( B  =  X  ->  ( A. x  e.  V  ( ph  /\  ( A 
.x.  B )  =  C )  <->  A. x  e.  V  ( ps  /\  ( A  .x.  X
)  =  C ) ) )
Distinct variable groups:    x, B    x, X
Allowed substitution hints:    ph( x)    ps( x)    A( x)    C( x)    .x. ( x)    V( x)

Proof of Theorem ovanraleqv
StepHypRef Expression
1 ovanraleqv.1 . . 3  |-  ( B  =  X  ->  ( ph 
<->  ps ) )
2 oveq2 5975 . . . 4  |-  ( B  =  X  ->  ( A  .x.  B )  =  ( A  .x.  X
) )
32eqeq1d 2216 . . 3  |-  ( B  =  X  ->  (
( A  .x.  B
)  =  C  <->  ( A  .x.  X )  =  C ) )
41, 3anbi12d 473 . 2  |-  ( B  =  X  ->  (
( ph  /\  ( A  .x.  B )  =  C )  <->  ( ps  /\  ( A  .x.  X
)  =  C ) ) )
54ralbidv 2508 1  |-  ( B  =  X  ->  ( A. x  e.  V  ( ph  /\  ( A 
.x.  B )  =  C )  <->  A. x  e.  V  ( ps  /\  ( A  .x.  X
)  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   A.wral 2486  (class class class)co 5967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  mgmidmo  13319  ismgmid  13324  ismgmid2  13327  mgmidsssn0  13331  gsumress  13342  sgrpidmndm  13367  ismndd  13384  mnd1  13402  gsumvallem2  13440  mhmmnd  13567
  Copyright terms: Public domain W3C validator