ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovanraleqv Unicode version

Theorem ovanraleqv 5866
Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Hypothesis
Ref Expression
ovanraleqv.1  |-  ( B  =  X  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ovanraleqv  |-  ( B  =  X  ->  ( A. x  e.  V  ( ph  /\  ( A 
.x.  B )  =  C )  <->  A. x  e.  V  ( ps  /\  ( A  .x.  X
)  =  C ) ) )
Distinct variable groups:    x, B    x, X
Allowed substitution hints:    ph( x)    ps( x)    A( x)    C( x)    .x. ( x)    V( x)

Proof of Theorem ovanraleqv
StepHypRef Expression
1 ovanraleqv.1 . . 3  |-  ( B  =  X  ->  ( ph 
<->  ps ) )
2 oveq2 5850 . . . 4  |-  ( B  =  X  ->  ( A  .x.  B )  =  ( A  .x.  X
) )
32eqeq1d 2174 . . 3  |-  ( B  =  X  ->  (
( A  .x.  B
)  =  C  <->  ( A  .x.  X )  =  C ) )
41, 3anbi12d 465 . 2  |-  ( B  =  X  ->  (
( ph  /\  ( A  .x.  B )  =  C )  <->  ( ps  /\  ( A  .x.  X
)  =  C ) ) )
54ralbidv 2466 1  |-  ( B  =  X  ->  ( A. x  e.  V  ( ph  /\  ( A 
.x.  B )  =  C )  <->  A. x  e.  V  ( ps  /\  ( A  .x.  X
)  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   A.wral 2444  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  mgmidmo  12603  ismgmid  12608  ismgmid2  12611  mgmidsssn0  12615
  Copyright terms: Public domain W3C validator