Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovanraleqv | Unicode version |
Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
Ref | Expression |
---|---|
ovanraleqv.1 |
Ref | Expression |
---|---|
ovanraleqv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovanraleqv.1 | . . 3 | |
2 | oveq2 5861 | . . . 4 | |
3 | 2 | eqeq1d 2179 | . . 3 |
4 | 1, 3 | anbi12d 470 | . 2 |
5 | 4 | ralbidv 2470 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wral 2448 (class class class)co 5853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: mgmidmo 12626 ismgmid 12631 ismgmid2 12634 mgmidsssn0 12638 sgrpidmndm 12656 ismndd 12673 mnd1 12679 |
Copyright terms: Public domain | W3C validator |