ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovanraleqv Unicode version

Theorem ovanraleqv 5946
Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Hypothesis
Ref Expression
ovanraleqv.1  |-  ( B  =  X  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ovanraleqv  |-  ( B  =  X  ->  ( A. x  e.  V  ( ph  /\  ( A 
.x.  B )  =  C )  <->  A. x  e.  V  ( ps  /\  ( A  .x.  X
)  =  C ) ) )
Distinct variable groups:    x, B    x, X
Allowed substitution hints:    ph( x)    ps( x)    A( x)    C( x)    .x. ( x)    V( x)

Proof of Theorem ovanraleqv
StepHypRef Expression
1 ovanraleqv.1 . . 3  |-  ( B  =  X  ->  ( ph 
<->  ps ) )
2 oveq2 5930 . . . 4  |-  ( B  =  X  ->  ( A  .x.  B )  =  ( A  .x.  X
) )
32eqeq1d 2205 . . 3  |-  ( B  =  X  ->  (
( A  .x.  B
)  =  C  <->  ( A  .x.  X )  =  C ) )
41, 3anbi12d 473 . 2  |-  ( B  =  X  ->  (
( ph  /\  ( A  .x.  B )  =  C )  <->  ( ps  /\  ( A  .x.  X
)  =  C ) ) )
54ralbidv 2497 1  |-  ( B  =  X  ->  ( A. x  e.  V  ( ph  /\  ( A 
.x.  B )  =  C )  <->  A. x  e.  V  ( ps  /\  ( A  .x.  X
)  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   A.wral 2475  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  mgmidmo  13015  ismgmid  13020  ismgmid2  13023  mgmidsssn0  13027  gsumress  13038  sgrpidmndm  13061  ismndd  13078  mnd1  13087  gsumvallem2  13125  mhmmnd  13246
  Copyright terms: Public domain W3C validator