ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovanraleqv Unicode version

Theorem ovanraleqv 5877
Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Hypothesis
Ref Expression
ovanraleqv.1  |-  ( B  =  X  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ovanraleqv  |-  ( B  =  X  ->  ( A. x  e.  V  ( ph  /\  ( A 
.x.  B )  =  C )  <->  A. x  e.  V  ( ps  /\  ( A  .x.  X
)  =  C ) ) )
Distinct variable groups:    x, B    x, X
Allowed substitution hints:    ph( x)    ps( x)    A( x)    C( x)    .x. ( x)    V( x)

Proof of Theorem ovanraleqv
StepHypRef Expression
1 ovanraleqv.1 . . 3  |-  ( B  =  X  ->  ( ph 
<->  ps ) )
2 oveq2 5861 . . . 4  |-  ( B  =  X  ->  ( A  .x.  B )  =  ( A  .x.  X
) )
32eqeq1d 2179 . . 3  |-  ( B  =  X  ->  (
( A  .x.  B
)  =  C  <->  ( A  .x.  X )  =  C ) )
41, 3anbi12d 470 . 2  |-  ( B  =  X  ->  (
( ph  /\  ( A  .x.  B )  =  C )  <->  ( ps  /\  ( A  .x.  X
)  =  C ) ) )
54ralbidv 2470 1  |-  ( B  =  X  ->  ( A. x  e.  V  ( ph  /\  ( A 
.x.  B )  =  C )  <->  A. x  e.  V  ( ps  /\  ( A  .x.  X
)  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   A.wral 2448  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  mgmidmo  12626  ismgmid  12631  ismgmid2  12634  mgmidsssn0  12638  sgrpidmndm  12656  ismndd  12673  mnd1  12679
  Copyright terms: Public domain W3C validator