ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemuopn Unicode version

Theorem ivthinclemuopn 14155
Description: Lemma for ivthinc 14160. The upper cut is open. (Contributed by Jim Kingdon, 19-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
ivthinclemuopn.r  |-  ( ph  ->  S  e.  R )
Assertion
Ref Expression
ivthinclemuopn  |-  ( ph  ->  E. q  e.  R  q  <  S )
Distinct variable groups:    w, A    x, A, y    w, B    x, B, y    w, F    x, F, y    R, q    S, q    w, S    x, S, y    w, U    ph, x, y
Allowed substitution hints:    ph( w, q)    A( q)    B( q)    D( x, y, w, q)    R( x, y, w)    U( x, y, q)    F( q)    L( x, y, w, q)

Proof of Theorem ivthinclemuopn
Dummy variables  z  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.7 . . 3  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
2 ivth.5 . . . 4  |-  ( ph  ->  ( A [,] B
)  C_  D )
3 ivthinclemuopn.r . . . . . 6  |-  ( ph  ->  S  e.  R )
4 fveq2 5517 . . . . . . . 8  |-  ( w  =  S  ->  ( F `  w )  =  ( F `  S ) )
54breq2d 4017 . . . . . . 7  |-  ( w  =  S  ->  ( U  <  ( F `  w )  <->  U  <  ( F `  S ) ) )
6 ivthinclem.r . . . . . . 7  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
75, 6elrab2 2898 . . . . . 6  |-  ( S  e.  R  <->  ( S  e.  ( A [,] B
)  /\  U  <  ( F `  S ) ) )
83, 7sylib 122 . . . . 5  |-  ( ph  ->  ( S  e.  ( A [,] B )  /\  U  <  ( F `  S )
) )
98simpld 112 . . . 4  |-  ( ph  ->  S  e.  ( A [,] B ) )
102, 9sseldd 3158 . . 3  |-  ( ph  ->  S  e.  D )
11 fveq2 5517 . . . . . . 7  |-  ( x  =  S  ->  ( F `  x )  =  ( F `  S ) )
1211eleq1d 2246 . . . . . 6  |-  ( x  =  S  ->  (
( F `  x
)  e.  RR  <->  ( F `  S )  e.  RR ) )
13 ivth.8 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
1413ralrimiva 2550 . . . . . 6  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
1512, 14, 9rspcdva 2848 . . . . 5  |-  ( ph  ->  ( F `  S
)  e.  RR )
16 ivth.3 . . . . 5  |-  ( ph  ->  U  e.  RR )
1715, 16resubcld 8340 . . . 4  |-  ( ph  ->  ( ( F `  S )  -  U
)  e.  RR )
188simprd 114 . . . . 5  |-  ( ph  ->  U  <  ( F `
 S ) )
1916, 15posdifd 8491 . . . . 5  |-  ( ph  ->  ( U  <  ( F `  S )  <->  0  <  ( ( F `
 S )  -  U ) ) )
2018, 19mpbid 147 . . . 4  |-  ( ph  ->  0  <  ( ( F `  S )  -  U ) )
2117, 20elrpd 9695 . . 3  |-  ( ph  ->  ( ( F `  S )  -  U
)  e.  RR+ )
22 cncfi 14104 . . 3  |-  ( ( F  e.  ( D
-cn-> CC )  /\  S  e.  D  /\  (
( F `  S
)  -  U )  e.  RR+ )  ->  E. d  e.  RR+  A. z  e.  D  ( ( abs `  ( z  -  S
) )  <  d  ->  ( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) )
231, 10, 21, 22syl3anc 1238 . 2  |-  ( ph  ->  E. d  e.  RR+  A. z  e.  D  ( ( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) )
24 ivth.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
25 ivth.2 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
26 elicc2 9940 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( S  e.  ( A [,] B )  <-> 
( S  e.  RR  /\  A  <_  S  /\  S  <_  B ) ) )
2724, 25, 26syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( S  e.  ( A [,] B )  <-> 
( S  e.  RR  /\  A  <_  S  /\  S  <_  B ) ) )
289, 27mpbid 147 . . . . . . . 8  |-  ( ph  ->  ( S  e.  RR  /\  A  <_  S  /\  S  <_  B ) )
2928simp1d 1009 . . . . . . 7  |-  ( ph  ->  S  e.  RR )
3029adantr 276 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  S  e.  RR )
31 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
d  e.  RR+ )
3231rphalfcld 9711 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( d  /  2
)  e.  RR+ )
3332rpred 9698 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( d  /  2
)  e.  RR )
3430, 33resubcld 8340 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( S  -  (
d  /  2 ) )  e.  RR )
3524adantr 276 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  A  e.  RR )
3631rpred 9698 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
d  e.  RR )
3730, 36resubcld 8340 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( S  -  d
)  e.  RR )
3815ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  ( F `  S )  e.  RR )
3938recnd 7988 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  ( F `  S )  e.  CC )
4016recnd 7988 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  CC )
4140ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  U  e.  CC )
4239, 41nncand 8275 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  (
( F `  S
)  -  ( ( F `  S )  -  U ) )  =  U )
43 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  ( S  -  d )  <  A )
4424ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  A  e.  RR )
4529ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  S  e.  RR )
4631adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  d  e.  RR+ )
4746rpred 9698 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  d  e.  RR )
4845, 47readdcld 7989 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  ( S  +  d )  e.  RR )
4928simp2d 1010 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  <_  S )
5049ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  A  <_  S )
5145, 46ltaddrpd 9732 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  S  <  ( S  +  d ) )
5244, 45, 48, 50, 51lelttrd 8084 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  A  <  ( S  +  d ) )
5344, 45, 47absdifltd 11189 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  (
( abs `  ( A  -  S )
)  <  d  <->  ( ( S  -  d )  <  A  /\  A  < 
( S  +  d ) ) ) )
5443, 52, 53mpbir2and 944 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  ( abs `  ( A  -  S ) )  < 
d )
55 fvoveq1 5900 . . . . . . . . . . . . . . . 16  |-  ( z  =  A  ->  ( abs `  ( z  -  S ) )  =  ( abs `  ( A  -  S )
) )
5655breq1d 4015 . . . . . . . . . . . . . . 15  |-  ( z  =  A  ->  (
( abs `  (
z  -  S ) )  <  d  <->  ( abs `  ( A  -  S
) )  <  d
) )
5756imbrov2fvoveq 5902 . . . . . . . . . . . . . 14  |-  ( z  =  A  ->  (
( ( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) )  <-> 
( ( abs `  ( A  -  S )
)  <  d  ->  ( abs `  ( ( F `  A )  -  ( F `  S ) ) )  <  ( ( F `
 S )  -  U ) ) ) )
58 simplrr 536 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) )
5924rexrd 8009 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  RR* )
6025rexrd 8009 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  RR* )
61 ivth.4 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  <  B )
6224, 25, 61ltled 8078 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  <_  B )
63 lbicc2 9986 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
6459, 60, 62, 63syl3anc 1238 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  ( A [,] B ) )
652, 64sseldd 3158 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  D )
6665ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  A  e.  D )
6757, 58, 66rspcdva 2848 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  (
( abs `  ( A  -  S )
)  <  d  ->  ( abs `  ( ( F `  A )  -  ( F `  S ) ) )  <  ( ( F `
 S )  -  U ) ) )
6854, 67mpd 13 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  ( abs `  ( ( F `
 A )  -  ( F `  S ) ) )  <  (
( F `  S
)  -  U ) )
69 fveq2 5517 . . . . . . . . . . . . . . . 16  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
7069eleq1d 2246 . . . . . . . . . . . . . . 15  |-  ( x  =  A  ->  (
( F `  x
)  e.  RR  <->  ( F `  A )  e.  RR ) )
7114adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  A. x  e.  ( A [,] B ) ( F `  x )  e.  RR )
7264adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  A  e.  ( A [,] B ) )
7370, 71, 72rspcdva 2848 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( F `  A
)  e.  RR )
7473adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  ( F `  A )  e.  RR )
7517ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  (
( F `  S
)  -  U )  e.  RR )
7674, 38, 75absdifltd 11189 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  (
( abs `  (
( F `  A
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U )  <->  ( (
( F `  S
)  -  ( ( F `  S )  -  U ) )  <  ( F `  A )  /\  ( F `  A )  <  ( ( F `  S )  +  ( ( F `  S
)  -  U ) ) ) ) )
7768, 76mpbid 147 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  (
( ( F `  S )  -  (
( F `  S
)  -  U ) )  <  ( F `
 A )  /\  ( F `  A )  <  ( ( F `
 S )  +  ( ( F `  S )  -  U
) ) ) )
7877simpld 112 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  (
( F `  S
)  -  ( ( F `  S )  -  U ) )  <  ( F `  A ) )
7942, 78eqbrtrrd 4029 . . . . . . . . 9  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  U  <  ( F `  A
) )
8016ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  U  e.  RR )
81 ivth.9 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
8281simpld 112 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  A
)  <  U )
8382ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  ( F `  A )  <  U )
8474, 80, 83ltnsymd 8079 . . . . . . . . 9  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )  /\  ( S  -  d )  <  A )  ->  -.  U  <  ( F `  A ) )
8579, 84pm2.65da 661 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  -.  ( S  -  d
)  <  A )
8635, 37, 85nltled 8080 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  A  <_  ( S  -  d ) )
87 rphalflt 9685 . . . . . . . . 9  |-  ( d  e.  RR+  ->  ( d  /  2 )  < 
d )
8831, 87syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( d  /  2
)  <  d )
8933, 36, 30, 88ltsub2dd 8517 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( S  -  d
)  <  ( S  -  ( d  / 
2 ) ) )
9035, 37, 34, 86, 89lelttrd 8084 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  A  <  ( S  -  ( d  /  2
) ) )
9135, 34, 90ltled 8078 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  A  <_  ( S  -  ( d  /  2
) ) )
9225adantr 276 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  B  e.  RR )
9330, 32ltsubrpd 9731 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( S  -  (
d  /  2 ) )  <  S )
9434, 30, 93ltled 8078 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( S  -  (
d  /  2 ) )  <_  S )
9528simp3d 1011 . . . . . . 7  |-  ( ph  ->  S  <_  B )
9695adantr 276 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  S  <_  B )
9734, 30, 92, 94, 96letrd 8083 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( S  -  (
d  /  2 ) )  <_  B )
98 elicc2 9940 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( S  -  ( d  /  2
) )  e.  ( A [,] B )  <-> 
( ( S  -  ( d  /  2
) )  e.  RR  /\  A  <_  ( S  -  ( d  / 
2 ) )  /\  ( S  -  (
d  /  2 ) )  <_  B )
) )
9935, 92, 98syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( ( S  -  ( d  /  2
) )  e.  ( A [,] B )  <-> 
( ( S  -  ( d  /  2
) )  e.  RR  /\  A  <_  ( S  -  ( d  / 
2 ) )  /\  ( S  -  (
d  /  2 ) )  <_  B )
) )
10034, 91, 97, 99mpbir3and 1180 . . . 4  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( S  -  (
d  /  2 ) )  e.  ( A [,] B ) )
101 fveq2 5517 . . . . . . . . 9  |-  ( x  =  ( S  -  ( d  /  2
) )  ->  ( F `  x )  =  ( F `  ( S  -  (
d  /  2 ) ) ) )
102101eleq1d 2246 . . . . . . . 8  |-  ( x  =  ( S  -  ( d  /  2
) )  ->  (
( F `  x
)  e.  RR  <->  ( F `  ( S  -  (
d  /  2 ) ) )  e.  RR ) )
103102, 71, 100rspcdva 2848 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( F `  ( S  -  ( d  /  2 ) ) )  e.  RR )
10415adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( F `  S
)  e.  RR )
105 breq2 4009 . . . . . . . . . . 11  |-  ( y  =  S  ->  (
( S  -  (
d  /  2 ) )  <  y  <->  ( S  -  ( d  / 
2 ) )  < 
S ) )
106 fveq2 5517 . . . . . . . . . . . 12  |-  ( y  =  S  ->  ( F `  y )  =  ( F `  S ) )
107106breq2d 4017 . . . . . . . . . . 11  |-  ( y  =  S  ->  (
( F `  ( S  -  ( d  /  2 ) ) )  <  ( F `
 y )  <->  ( F `  ( S  -  (
d  /  2 ) ) )  <  ( F `  S )
) )
108105, 107imbi12d 234 . . . . . . . . . 10  |-  ( y  =  S  ->  (
( ( S  -  ( d  /  2
) )  <  y  ->  ( F `  ( S  -  ( d  /  2 ) ) )  <  ( F `
 y ) )  <-> 
( ( S  -  ( d  /  2
) )  <  S  ->  ( F `  ( S  -  ( d  /  2 ) ) )  <  ( F `
 S ) ) ) )
109 breq1 4008 . . . . . . . . . . . . 13  |-  ( x  =  ( S  -  ( d  /  2
) )  ->  (
x  <  y  <->  ( S  -  ( d  / 
2 ) )  < 
y ) )
110101breq1d 4015 . . . . . . . . . . . . 13  |-  ( x  =  ( S  -  ( d  /  2
) )  ->  (
( F `  x
)  <  ( F `  y )  <->  ( F `  ( S  -  (
d  /  2 ) ) )  <  ( F `  y )
) )
111109, 110imbi12d 234 . . . . . . . . . . . 12  |-  ( x  =  ( S  -  ( d  /  2
) )  ->  (
( x  <  y  ->  ( F `  x
)  <  ( F `  y ) )  <->  ( ( S  -  ( d  /  2 ) )  <  y  ->  ( F `  ( S  -  ( d  / 
2 ) ) )  <  ( F `  y ) ) ) )
112111ralbidv 2477 . . . . . . . . . . 11  |-  ( x  =  ( S  -  ( d  /  2
) )  ->  ( A. y  e.  ( A [,] B ) ( x  <  y  -> 
( F `  x
)  <  ( F `  y ) )  <->  A. y  e.  ( A [,] B
) ( ( S  -  ( d  / 
2 ) )  < 
y  ->  ( F `  ( S  -  (
d  /  2 ) ) )  <  ( F `  y )
) ) )
113 ivthinc.i . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
114113expr 375 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  y  e.  ( A [,] B
) )  ->  (
x  <  y  ->  ( F `  x )  <  ( F `  y ) ) )
115114ralrimiva 2550 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A. y  e.  ( A [,] B
) ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )
116115ralrimiva 2550 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
117116adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x )  <  ( F `  y
) ) )
118112, 117, 100rspcdva 2848 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  A. y  e.  ( A [,] B ) ( ( S  -  (
d  /  2 ) )  <  y  -> 
( F `  ( S  -  ( d  /  2 ) ) )  <  ( F `
 y ) ) )
1199adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  S  e.  ( A [,] B ) )
120108, 118, 119rspcdva 2848 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( ( S  -  ( d  /  2
) )  <  S  ->  ( F `  ( S  -  ( d  /  2 ) ) )  <  ( F `
 S ) ) )
12193, 120mpd 13 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( F `  ( S  -  ( d  /  2 ) ) )  <  ( F `
 S ) )
122103, 104, 121ltled 8078 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( F `  ( S  -  ( d  /  2 ) ) )  <_  ( F `  S ) )
123103, 104, 122abssuble0d 11188 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( abs `  (
( F `  ( S  -  ( d  /  2 ) ) )  -  ( F `
 S ) ) )  =  ( ( F `  S )  -  ( F `  ( S  -  (
d  /  2 ) ) ) ) )
12434recnd 7988 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( S  -  (
d  /  2 ) )  e.  CC )
12530recnd 7988 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  S  e.  CC )
126124, 125abssubd 11204 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( abs `  (
( S  -  (
d  /  2 ) )  -  S ) )  =  ( abs `  ( S  -  ( S  -  ( d  /  2 ) ) ) ) )
12733recnd 7988 . . . . . . . . . . 11  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( d  /  2
)  e.  CC )
128125, 127nncand 8275 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( S  -  ( S  -  ( d  /  2 ) ) )  =  ( d  /  2 ) )
129128fveq2d 5521 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( abs `  ( S  -  ( S  -  ( d  / 
2 ) ) ) )  =  ( abs `  ( d  /  2
) ) )
13032rpge0d 9702 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
0  <_  ( d  /  2 ) )
13133, 130absidd 11178 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( abs `  (
d  /  2 ) )  =  ( d  /  2 ) )
132126, 129, 1313eqtrd 2214 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( abs `  (
( S  -  (
d  /  2 ) )  -  S ) )  =  ( d  /  2 ) )
133132, 88eqbrtrd 4027 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( abs `  (
( S  -  (
d  /  2 ) )  -  S ) )  <  d )
134 fvoveq1 5900 . . . . . . . . . 10  |-  ( z  =  ( S  -  ( d  /  2
) )  ->  ( abs `  ( z  -  S ) )  =  ( abs `  (
( S  -  (
d  /  2 ) )  -  S ) ) )
135134breq1d 4015 . . . . . . . . 9  |-  ( z  =  ( S  -  ( d  /  2
) )  ->  (
( abs `  (
z  -  S ) )  <  d  <->  ( abs `  ( ( S  -  ( d  /  2
) )  -  S
) )  <  d
) )
136135imbrov2fvoveq 5902 . . . . . . . 8  |-  ( z  =  ( S  -  ( d  /  2
) )  ->  (
( ( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) )  <-> 
( ( abs `  (
( S  -  (
d  /  2 ) )  -  S ) )  <  d  -> 
( abs `  (
( F `  ( S  -  ( d  /  2 ) ) )  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) ) )
137 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  A. z  e.  D  ( ( abs `  (
z  -  S ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) )
1382adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( A [,] B
)  C_  D )
139138, 100sseldd 3158 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( S  -  (
d  /  2 ) )  e.  D )
140136, 137, 139rspcdva 2848 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( ( abs `  (
( S  -  (
d  /  2 ) )  -  S ) )  <  d  -> 
( abs `  (
( F `  ( S  -  ( d  /  2 ) ) )  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) ) )
141133, 140mpd 13 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( abs `  (
( F `  ( S  -  ( d  /  2 ) ) )  -  ( F `
 S ) ) )  <  ( ( F `  S )  -  U ) )
142123, 141eqbrtrrd 4029 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( ( F `  S )  -  ( F `  ( S  -  ( d  / 
2 ) ) ) )  <  ( ( F `  S )  -  U ) )
14316adantr 276 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  U  e.  RR )
144143, 103, 104ltsub2d 8514 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( U  <  ( F `  ( S  -  ( d  / 
2 ) ) )  <-> 
( ( F `  S )  -  ( F `  ( S  -  ( d  / 
2 ) ) ) )  <  ( ( F `  S )  -  U ) ) )
145142, 144mpbird 167 . . . 4  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  U  <  ( F `  ( S  -  (
d  /  2 ) ) ) )
146 fveq2 5517 . . . . . 6  |-  ( w  =  ( S  -  ( d  /  2
) )  ->  ( F `  w )  =  ( F `  ( S  -  (
d  /  2 ) ) ) )
147146breq2d 4017 . . . . 5  |-  ( w  =  ( S  -  ( d  /  2
) )  ->  ( U  <  ( F `  w )  <->  U  <  ( F `  ( S  -  ( d  / 
2 ) ) ) ) )
148147, 6elrab2 2898 . . . 4  |-  ( ( S  -  ( d  /  2 ) )  e.  R  <->  ( ( S  -  ( d  /  2 ) )  e.  ( A [,] B )  /\  U  <  ( F `  ( S  -  ( d  /  2 ) ) ) ) )
149100, 145, 148sylanbrc 417 . . 3  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  -> 
( S  -  (
d  /  2 ) )  e.  R )
150 breq1 4008 . . . 4  |-  ( q  =  ( S  -  ( d  /  2
) )  ->  (
q  <  S  <->  ( S  -  ( d  / 
2 ) )  < 
S ) )
151150rspcev 2843 . . 3  |-  ( ( ( S  -  (
d  /  2 ) )  e.  R  /\  ( S  -  (
d  /  2 ) )  <  S )  ->  E. q  e.  R  q  <  S )
152149, 93, 151syl2anc 411 . 2  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  S ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  S )
) )  <  (
( F `  S
)  -  U ) ) ) )  ->  E. q  e.  R  q  <  S )
15323, 152rexlimddv 2599 1  |-  ( ph  ->  E. q  e.  R  q  <  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459    C_ wss 3131   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813    + caddc 7816   RR*cxr 7993    < clt 7994    <_ cle 7995    - cmin 8130    / cdiv 8631   2c2 8972   RR+crp 9655   [,]cicc 9893   abscabs 11008   -cn->ccncf 14096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-map 6652  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-rp 9656  df-icc 9897  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-cncf 14097
This theorem is referenced by:  ivthinclemur  14156
  Copyright terms: Public domain W3C validator