ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvoveq1d Unicode version

Theorem fvoveq1d 5968
Description: Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.)
Hypothesis
Ref Expression
fvoveq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
fvoveq1d  |-  ( ph  ->  ( F `  ( A O C ) )  =  ( F `  ( B O C ) ) )

Proof of Theorem fvoveq1d
StepHypRef Expression
1 fvoveq1d.1 . . 3  |-  ( ph  ->  A  =  B )
21oveq1d 5961 . 2  |-  ( ph  ->  ( A O C )  =  ( B O C ) )
32fveq2d 5582 1  |-  ( ph  ->  ( F `  ( A O C ) )  =  ( F `  ( B O C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   ` cfv 5272  (class class class)co 5946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-iota 5233  df-fv 5280  df-ov 5949
This theorem is referenced by:  fvoveq1  5969  imbrov2fvoveq  5971  seqvalcd  10608  pfxfvlsw  11149  mpomulcn  15071  mulc1cncf  15094  mulcncflem  15112  mulcncf  15113  limccl  15164  ellimc3apf  15165  limcdifap  15167  limcmpted  15168  limcresi  15171  limccoap  15183  dveflem  15231
  Copyright terms: Public domain W3C validator