| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvoveq1d | Unicode version | ||
| Description: Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.) |
| Ref | Expression |
|---|---|
| fvoveq1d.1 |
|
| Ref | Expression |
|---|---|
| fvoveq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1d.1 |
. . 3
| |
| 2 | 1 | oveq1d 5959 |
. 2
|
| 3 | 2 | fveq2d 5580 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: fvoveq1 5967 imbrov2fvoveq 5969 seqvalcd 10606 mpomulcn 15038 mulc1cncf 15061 mulcncflem 15079 mulcncf 15080 limccl 15131 ellimc3apf 15132 limcdifap 15134 limcmpted 15135 limcresi 15138 limccoap 15150 dveflem 15198 |
| Copyright terms: Public domain | W3C validator |