ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvoveq1d Unicode version

Theorem fvoveq1d 5966
Description: Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.)
Hypothesis
Ref Expression
fvoveq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
fvoveq1d  |-  ( ph  ->  ( F `  ( A O C ) )  =  ( F `  ( B O C ) ) )

Proof of Theorem fvoveq1d
StepHypRef Expression
1 fvoveq1d.1 . . 3  |-  ( ph  ->  A  =  B )
21oveq1d 5959 . 2  |-  ( ph  ->  ( A O C )  =  ( B O C ) )
32fveq2d 5580 1  |-  ( ph  ->  ( F `  ( A O C ) )  =  ( F `  ( B O C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   ` cfv 5271  (class class class)co 5944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947
This theorem is referenced by:  fvoveq1  5967  imbrov2fvoveq  5969  seqvalcd  10606  mpomulcn  15038  mulc1cncf  15061  mulcncflem  15079  mulcncf  15080  limccl  15131  ellimc3apf  15132  limcdifap  15134  limcmpted  15135  limcresi  15138  limccoap  15150  dveflem  15198
  Copyright terms: Public domain W3C validator