ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imbrov2fvoveq GIF version

Theorem imbrov2fvoveq 5982
Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
Hypothesis
Ref Expression
imbrov2fvoveq.1 (𝑋 = 𝑌 → (𝜑𝜓))
Assertion
Ref Expression
imbrov2fvoveq (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴)))

Proof of Theorem imbrov2fvoveq
StepHypRef Expression
1 imbrov2fvoveq.1 . 2 (𝑋 = 𝑌 → (𝜑𝜓))
2 fveq2 5589 . . . 4 (𝑋 = 𝑌 → (𝐺𝑋) = (𝐺𝑌))
32fvoveq1d 5979 . . 3 (𝑋 = 𝑌 → (𝐹‘((𝐺𝑋) · 𝑂)) = (𝐹‘((𝐺𝑌) · 𝑂)))
43breq1d 4061 . 2 (𝑋 = 𝑌 → ((𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴 ↔ (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴))
51, 4imbi12d 234 1 (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373   class class class wbr 4051  cfv 5280  (class class class)co 5957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960
This theorem is referenced by:  cncfco  15138  mulcncflem  15154  ivthinclemlopn  15183  ivthinclemuopn  15185  limcimolemlt  15211  eflt  15322
  Copyright terms: Public domain W3C validator