ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imbrov2fvoveq GIF version

Theorem imbrov2fvoveq 5903
Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
Hypothesis
Ref Expression
imbrov2fvoveq.1 (๐‘‹ = ๐‘Œ โ†’ (๐œ‘ โ†” ๐œ“))
Assertion
Ref Expression
imbrov2fvoveq (๐‘‹ = ๐‘Œ โ†’ ((๐œ‘ โ†’ (๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚))๐‘…๐ด) โ†” (๐œ“ โ†’ (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚))๐‘…๐ด)))

Proof of Theorem imbrov2fvoveq
StepHypRef Expression
1 imbrov2fvoveq.1 . 2 (๐‘‹ = ๐‘Œ โ†’ (๐œ‘ โ†” ๐œ“))
2 fveq2 5517 . . . 4 (๐‘‹ = ๐‘Œ โ†’ (๐บโ€˜๐‘‹) = (๐บโ€˜๐‘Œ))
32fvoveq1d 5900 . . 3 (๐‘‹ = ๐‘Œ โ†’ (๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚)) = (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚)))
43breq1d 4015 . 2 (๐‘‹ = ๐‘Œ โ†’ ((๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚))๐‘…๐ด โ†” (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚))๐‘…๐ด))
51, 4imbi12d 234 1 (๐‘‹ = ๐‘Œ โ†’ ((๐œ‘ โ†’ (๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚))๐‘…๐ด) โ†” (๐œ“ โ†’ (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚))๐‘…๐ด)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โ†” wb 105   = wceq 1353   class class class wbr 4005  โ€˜cfv 5218  (class class class)co 5878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5881
This theorem is referenced by:  cncfco  14239  mulcncflem  14251  ivthinclemlopn  14275  ivthinclemuopn  14277  limcimolemlt  14294  eflt  14357
  Copyright terms: Public domain W3C validator