ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemlopn Unicode version

Theorem ivthinclemlopn 15079
Description: Lemma for ivthinc 15086. The lower cut is open. (Contributed by Jim Kingdon, 6-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
ivthinclemlopn.q  |-  ( ph  ->  Q  e.  L )
Assertion
Ref Expression
ivthinclemlopn  |-  ( ph  ->  E. r  e.  L  Q  <  r )
Distinct variable groups:    w, A    x, A, y    w, B    x, B, y    w, F    x, F, y    L, r    Q, r    w, Q    x, Q, y    w, U    ph, x, y
Allowed substitution hints:    ph( w, r)    A( r)    B( r)    D( x, y, w, r)    R( x, y, w, r)    U( x, y, r)    F( r)    L( x, y, w)

Proof of Theorem ivthinclemlopn
Dummy variables  z  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.7 . . 3  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
2 ivth.5 . . . 4  |-  ( ph  ->  ( A [,] B
)  C_  D )
3 ivthinclemlopn.q . . . . . 6  |-  ( ph  ->  Q  e.  L )
4 fveq2 5575 . . . . . . . 8  |-  ( w  =  Q  ->  ( F `  w )  =  ( F `  Q ) )
54breq1d 4053 . . . . . . 7  |-  ( w  =  Q  ->  (
( F `  w
)  <  U  <->  ( F `  Q )  <  U
) )
6 ivthinclem.l . . . . . . 7  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
75, 6elrab2 2931 . . . . . 6  |-  ( Q  e.  L  <->  ( Q  e.  ( A [,] B
)  /\  ( F `  Q )  <  U
) )
83, 7sylib 122 . . . . 5  |-  ( ph  ->  ( Q  e.  ( A [,] B )  /\  ( F `  Q )  <  U
) )
98simpld 112 . . . 4  |-  ( ph  ->  Q  e.  ( A [,] B ) )
102, 9sseldd 3193 . . 3  |-  ( ph  ->  Q  e.  D )
11 ivth.3 . . . . 5  |-  ( ph  ->  U  e.  RR )
12 fveq2 5575 . . . . . . 7  |-  ( x  =  Q  ->  ( F `  x )  =  ( F `  Q ) )
1312eleq1d 2273 . . . . . 6  |-  ( x  =  Q  ->  (
( F `  x
)  e.  RR  <->  ( F `  Q )  e.  RR ) )
14 ivth.8 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
1514ralrimiva 2578 . . . . . 6  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
1613, 15, 9rspcdva 2881 . . . . 5  |-  ( ph  ->  ( F `  Q
)  e.  RR )
1711, 16resubcld 8452 . . . 4  |-  ( ph  ->  ( U  -  ( F `  Q )
)  e.  RR )
188simprd 114 . . . . 5  |-  ( ph  ->  ( F `  Q
)  <  U )
1916, 11posdifd 8604 . . . . 5  |-  ( ph  ->  ( ( F `  Q )  <  U  <->  0  <  ( U  -  ( F `  Q ) ) ) )
2018, 19mpbid 147 . . . 4  |-  ( ph  ->  0  <  ( U  -  ( F `  Q ) ) )
2117, 20elrpd 9814 . . 3  |-  ( ph  ->  ( U  -  ( F `  Q )
)  e.  RR+ )
22 cncfi 15021 . . 3  |-  ( ( F  e.  ( D
-cn-> CC )  /\  Q  e.  D  /\  ( U  -  ( F `  Q ) )  e.  RR+ )  ->  E. d  e.  RR+  A. z  e.  D  ( ( abs `  ( z  -  Q
) )  <  d  ->  ( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) )
231, 10, 21, 22syl3anc 1249 . 2  |-  ( ph  ->  E. d  e.  RR+  A. z  e.  D  ( ( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) )
24 ivth.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
25 ivth.2 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
26 elicc2 10059 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Q  e.  ( A [,] B )  <-> 
( Q  e.  RR  /\  A  <_  Q  /\  Q  <_  B ) ) )
2724, 25, 26syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( Q  e.  ( A [,] B )  <-> 
( Q  e.  RR  /\  A  <_  Q  /\  Q  <_  B ) ) )
289, 27mpbid 147 . . . . . . . 8  |-  ( ph  ->  ( Q  e.  RR  /\  A  <_  Q  /\  Q  <_  B ) )
2928simp1d 1011 . . . . . . 7  |-  ( ph  ->  Q  e.  RR )
3029adantr 276 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  Q  e.  RR )
31 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  d  e.  RR+ )
3231rphalfcld 9830 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
d  /  2 )  e.  RR+ )
3332rpred 9817 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
d  /  2 )  e.  RR )
3430, 33readdcld 8101 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  ( d  /  2 ) )  e.  RR )
3524adantr 276 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  A  e.  RR )
3628simp2d 1012 . . . . . . 7  |-  ( ph  ->  A  <_  Q )
3736adantr 276 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  A  <_  Q )
3830, 32ltaddrpd 9851 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  Q  <  ( Q  +  ( d  /  2 ) ) )
3930, 34, 38ltled 8190 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  Q  <_  ( Q  +  ( d  /  2 ) ) )
4035, 30, 34, 37, 39letrd 8195 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  A  <_  ( Q  +  ( d  /  2 ) ) )
4125adantr 276 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  B  e.  RR )
4231rpred 9817 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  d  e.  RR )
4330, 42readdcld 8101 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  d )  e.  RR )
44 rphalflt 9804 . . . . . . . . 9  |-  ( d  e.  RR+  ->  ( d  /  2 )  < 
d )
4531, 44syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
d  /  2 )  <  d )
4633, 42, 30, 45ltadd2dd 8494 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  ( d  /  2 ) )  <  ( Q  +  d ) )
4729ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  Q  e.  RR )
4831adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  d  e.  RR+ )
4948rpred 9817 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  d  e.  RR )
5047, 49resubcld 8452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( Q  -  d )  e.  RR )
5125ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  B  e.  RR )
5247, 48ltsubrpd 9850 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( Q  -  d )  <  Q )
5328simp3d 1013 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Q  <_  B )
5453ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  Q  <_  B )
5550, 47, 51, 52, 54ltletrd 8495 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( Q  -  d )  <  B )
56 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  B  <  ( Q  +  d ) )
5751, 47, 49absdifltd 11460 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  (
( abs `  ( B  -  Q )
)  <  d  <->  ( ( Q  -  d )  <  B  /\  B  < 
( Q  +  d ) ) ) )
5855, 56, 57mpbir2and 946 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( abs `  ( B  -  Q ) )  < 
d )
59 fvoveq1 5966 . . . . . . . . . . . . . . . . 17  |-  ( z  =  B  ->  ( abs `  ( z  -  Q ) )  =  ( abs `  ( B  -  Q )
) )
6059breq1d 4053 . . . . . . . . . . . . . . . 16  |-  ( z  =  B  ->  (
( abs `  (
z  -  Q ) )  <  d  <->  ( abs `  ( B  -  Q
) )  <  d
) )
6160imbrov2fvoveq 5968 . . . . . . . . . . . . . . 15  |-  ( z  =  B  ->  (
( ( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) )  <-> 
( ( abs `  ( B  -  Q )
)  <  d  ->  ( abs `  ( ( F `  B )  -  ( F `  Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )
62 simplrr 536 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) )
6324rexrd 8121 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  e.  RR* )
6425rexrd 8121 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  B  e.  RR* )
65 ivth.4 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A  <  B )
6624, 25, 65ltled 8190 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  <_  B )
67 ubicc2 10106 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
6863, 64, 66, 67syl3anc 1249 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  ( A [,] B ) )
692, 68sseldd 3193 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  D )
7069ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  B  e.  D )
7161, 62, 70rspcdva 2881 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  (
( abs `  ( B  -  Q )
)  <  d  ->  ( abs `  ( ( F `  B )  -  ( F `  Q ) ) )  <  ( U  -  ( F `  Q ) ) ) )
7258, 71mpd 13 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( abs `  ( ( F `
 B )  -  ( F `  Q ) ) )  <  ( U  -  ( F `  Q ) ) )
73 fveq2 5575 . . . . . . . . . . . . . . . . 17  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
7473eleq1d 2273 . . . . . . . . . . . . . . . 16  |-  ( x  =  B  ->  (
( F `  x
)  e.  RR  <->  ( F `  B )  e.  RR ) )
7515adantr 276 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  A. x  e.  ( A [,] B
) ( F `  x )  e.  RR )
7668adantr 276 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  B  e.  ( A [,] B
) )
7774, 75, 76rspcdva 2881 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( F `  B )  e.  RR )
7877adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( F `  B )  e.  RR )
7916ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( F `  Q )  e.  RR )
8017ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( U  -  ( F `  Q ) )  e.  RR )
8178, 79, 80absdifltd 11460 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  (
( abs `  (
( F `  B
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) )  <->  ( (
( F `  Q
)  -  ( U  -  ( F `  Q ) ) )  <  ( F `  B )  /\  ( F `  B )  <  ( ( F `  Q )  +  ( U  -  ( F `
 Q ) ) ) ) ) )
8272, 81mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  (
( ( F `  Q )  -  ( U  -  ( F `  Q ) ) )  <  ( F `  B )  /\  ( F `  B )  <  ( ( F `  Q )  +  ( U  -  ( F `
 Q ) ) ) ) )
8382simprd 114 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( F `  B )  <  ( ( F `  Q )  +  ( U  -  ( F `
 Q ) ) ) )
8479recnd 8100 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( F `  Q )  e.  CC )
8511recnd 8100 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  CC )
8685ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  U  e.  CC )
8784, 86pncan3d 8385 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  (
( F `  Q
)  +  ( U  -  ( F `  Q ) ) )  =  U )
8883, 87breqtrd 4069 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( F `  B )  <  U )
89 ivth.9 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
9089simprd 114 . . . . . . . . . . 11  |-  ( ph  ->  U  <  ( F `
 B ) )
9190ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  U  <  ( F `  B
) )
9288, 91jca 306 . . . . . . . . 9  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  (
( F `  B
)  <  U  /\  U  <  ( F `  B ) ) )
9311ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  U  e.  RR )
94 ltnsym2 8162 . . . . . . . . . 10  |-  ( ( ( F `  B
)  e.  RR  /\  U  e.  RR )  ->  -.  ( ( F `
 B )  < 
U  /\  U  <  ( F `  B ) ) )
9578, 93, 94syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  -.  ( ( F `  B )  <  U  /\  U  <  ( F `
 B ) ) )
9692, 95pm2.65da 662 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  -.  B  <  ( Q  +  d ) )
9743, 41, 96nltled 8192 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  d )  <_  B )
9834, 43, 41, 46, 97ltletrd 8495 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  ( d  /  2 ) )  <  B )
9934, 41, 98ltled 8190 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  ( d  /  2 ) )  <_  B )
100 elicc2 10059 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( Q  +  ( d  /  2
) )  e.  ( A [,] B )  <-> 
( ( Q  +  ( d  /  2
) )  e.  RR  /\  A  <_  ( Q  +  ( d  / 
2 ) )  /\  ( Q  +  (
d  /  2 ) )  <_  B )
) )
10135, 41, 100syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
( Q  +  ( d  /  2 ) )  e.  ( A [,] B )  <->  ( ( Q  +  ( d  /  2 ) )  e.  RR  /\  A  <_  ( Q  +  ( d  /  2 ) )  /\  ( Q  +  ( d  / 
2 ) )  <_  B ) ) )
10234, 40, 99, 101mpbir3and 1182 . . . 4  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  ( d  /  2 ) )  e.  ( A [,] B ) )
10316adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( F `  Q )  e.  RR )
104 fveq2 5575 . . . . . . . . 9  |-  ( x  =  ( Q  +  ( d  /  2
) )  ->  ( F `  x )  =  ( F `  ( Q  +  (
d  /  2 ) ) ) )
105104eleq1d 2273 . . . . . . . 8  |-  ( x  =  ( Q  +  ( d  /  2
) )  ->  (
( F `  x
)  e.  RR  <->  ( F `  ( Q  +  ( d  /  2 ) ) )  e.  RR ) )
106105, 75, 102rspcdva 2881 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( F `  ( Q  +  ( d  / 
2 ) ) )  e.  RR )
107 breq2 4047 . . . . . . . . . . 11  |-  ( y  =  ( Q  +  ( d  /  2
) )  ->  ( Q  <  y  <->  Q  <  ( Q  +  ( d  /  2 ) ) ) )
108 fveq2 5575 . . . . . . . . . . . 12  |-  ( y  =  ( Q  +  ( d  /  2
) )  ->  ( F `  y )  =  ( F `  ( Q  +  (
d  /  2 ) ) ) )
109108breq2d 4055 . . . . . . . . . . 11  |-  ( y  =  ( Q  +  ( d  /  2
) )  ->  (
( F `  Q
)  <  ( F `  y )  <->  ( F `  Q )  <  ( F `  ( Q  +  ( d  / 
2 ) ) ) ) )
110107, 109imbi12d 234 . . . . . . . . . 10  |-  ( y  =  ( Q  +  ( d  /  2
) )  ->  (
( Q  <  y  ->  ( F `  Q
)  <  ( F `  y ) )  <->  ( Q  <  ( Q  +  ( d  /  2 ) )  ->  ( F `  Q )  <  ( F `  ( Q  +  ( d  / 
2 ) ) ) ) ) )
111 breq1 4046 . . . . . . . . . . . . . 14  |-  ( x  =  Q  ->  (
x  <  y  <->  Q  <  y ) )
11212breq1d 4053 . . . . . . . . . . . . . 14  |-  ( x  =  Q  ->  (
( F `  x
)  <  ( F `  y )  <->  ( F `  Q )  <  ( F `  y )
) )
113111, 112imbi12d 234 . . . . . . . . . . . . 13  |-  ( x  =  Q  ->  (
( x  <  y  ->  ( F `  x
)  <  ( F `  y ) )  <->  ( Q  <  y  ->  ( F `  Q )  <  ( F `  y )
) ) )
114113ralbidv 2505 . . . . . . . . . . . 12  |-  ( x  =  Q  ->  ( A. y  e.  ( A [,] B ) ( x  <  y  -> 
( F `  x
)  <  ( F `  y ) )  <->  A. y  e.  ( A [,] B
) ( Q  < 
y  ->  ( F `  Q )  <  ( F `  y )
) ) )
115 ivthinc.i . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
116115expr 375 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  y  e.  ( A [,] B
) )  ->  (
x  <  y  ->  ( F `  x )  <  ( F `  y ) ) )
117116ralrimiva 2578 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A. y  e.  ( A [,] B
) ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )
118117ralrimiva 2578 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
119114, 118, 9rspcdva 2881 . . . . . . . . . . 11  |-  ( ph  ->  A. y  e.  ( A [,] B ) ( Q  <  y  ->  ( F `  Q
)  <  ( F `  y ) ) )
120119adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  A. y  e.  ( A [,] B
) ( Q  < 
y  ->  ( F `  Q )  <  ( F `  y )
) )
121110, 120, 102rspcdva 2881 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  <  ( Q  +  ( d  /  2
) )  ->  ( F `  Q )  <  ( F `  ( Q  +  ( d  /  2 ) ) ) ) )
12238, 121mpd 13 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( F `  Q )  <  ( F `  ( Q  +  ( d  /  2 ) ) ) )
123103, 106, 122ltled 8190 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( F `  Q )  <_  ( F `  ( Q  +  ( d  /  2 ) ) ) )
124103, 106, 123abssubge0d 11458 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( abs `  ( ( F `
 ( Q  +  ( d  /  2
) ) )  -  ( F `  Q ) ) )  =  ( ( F `  ( Q  +  ( d  /  2 ) ) )  -  ( F `
 Q ) ) )
12530recnd 8100 . . . . . . . . . . 11  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  Q  e.  CC )
12633recnd 8100 . . . . . . . . . . 11  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
d  /  2 )  e.  CC )
127125, 126pncan2d 8384 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
( Q  +  ( d  /  2 ) )  -  Q )  =  ( d  / 
2 ) )
128127fveq2d 5579 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( abs `  ( ( Q  +  ( d  / 
2 ) )  -  Q ) )  =  ( abs `  (
d  /  2 ) ) )
12932rpge0d 9821 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  0  <_  ( d  /  2
) )
13033, 129absidd 11449 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( abs `  ( d  / 
2 ) )  =  ( d  /  2
) )
131128, 130eqtrd 2237 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( abs `  ( ( Q  +  ( d  / 
2 ) )  -  Q ) )  =  ( d  /  2
) )
132131, 45eqbrtrd 4065 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( abs `  ( ( Q  +  ( d  / 
2 ) )  -  Q ) )  < 
d )
133 fvoveq1 5966 . . . . . . . . . 10  |-  ( z  =  ( Q  +  ( d  /  2
) )  ->  ( abs `  ( z  -  Q ) )  =  ( abs `  (
( Q  +  ( d  /  2 ) )  -  Q ) ) )
134133breq1d 4053 . . . . . . . . 9  |-  ( z  =  ( Q  +  ( d  /  2
) )  ->  (
( abs `  (
z  -  Q ) )  <  d  <->  ( abs `  ( ( Q  +  ( d  /  2
) )  -  Q
) )  <  d
) )
135134imbrov2fvoveq 5968 . . . . . . . 8  |-  ( z  =  ( Q  +  ( d  /  2
) )  ->  (
( ( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) )  <-> 
( ( abs `  (
( Q  +  ( d  /  2 ) )  -  Q ) )  <  d  -> 
( abs `  (
( F `  ( Q  +  ( d  /  2 ) ) )  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )
136 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) )
1372adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( A [,] B )  C_  D )
138137, 102sseldd 3193 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  ( d  /  2 ) )  e.  D )
139135, 136, 138rspcdva 2881 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
( abs `  (
( Q  +  ( d  /  2 ) )  -  Q ) )  <  d  -> 
( abs `  (
( F `  ( Q  +  ( d  /  2 ) ) )  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) )
140132, 139mpd 13 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( abs `  ( ( F `
 ( Q  +  ( d  /  2
) ) )  -  ( F `  Q ) ) )  <  ( U  -  ( F `  Q ) ) )
141124, 140eqbrtrrd 4067 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
( F `  ( Q  +  ( d  /  2 ) ) )  -  ( F `
 Q ) )  <  ( U  -  ( F `  Q ) ) )
14211adantr 276 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  U  e.  RR )
143106, 142, 103ltsub1d 8626 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
( F `  ( Q  +  ( d  /  2 ) ) )  <  U  <->  ( ( F `  ( Q  +  ( d  / 
2 ) ) )  -  ( F `  Q ) )  < 
( U  -  ( F `  Q )
) ) )
144141, 143mpbird 167 . . . 4  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( F `  ( Q  +  ( d  / 
2 ) ) )  <  U )
145 fveq2 5575 . . . . . 6  |-  ( w  =  ( Q  +  ( d  /  2
) )  ->  ( F `  w )  =  ( F `  ( Q  +  (
d  /  2 ) ) ) )
146145breq1d 4053 . . . . 5  |-  ( w  =  ( Q  +  ( d  /  2
) )  ->  (
( F `  w
)  <  U  <->  ( F `  ( Q  +  ( d  /  2 ) ) )  <  U
) )
147146, 6elrab2 2931 . . . 4  |-  ( ( Q  +  ( d  /  2 ) )  e.  L  <->  ( ( Q  +  ( d  /  2 ) )  e.  ( A [,] B )  /\  ( F `  ( Q  +  ( d  / 
2 ) ) )  <  U ) )
148102, 144, 147sylanbrc 417 . . 3  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  ( d  /  2 ) )  e.  L )
149 breq2 4047 . . . 4  |-  ( r  =  ( Q  +  ( d  /  2
) )  ->  ( Q  <  r  <->  Q  <  ( Q  +  ( d  /  2 ) ) ) )
150149rspcev 2876 . . 3  |-  ( ( ( Q  +  ( d  /  2 ) )  e.  L  /\  Q  <  ( Q  +  ( d  /  2
) ) )  ->  E. r  e.  L  Q  <  r )
151148, 38, 150syl2anc 411 . 2  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  E. r  e.  L  Q  <  r )
15223, 151rexlimddv 2627 1  |-  ( ph  ->  E. r  e.  L  Q  <  r )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484   {crab 2487    C_ wss 3165   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   CCcc 7922   RRcr 7923   0cc0 7924    + caddc 7927   RR*cxr 8105    < clt 8106    <_ cle 8107    - cmin 8242    / cdiv 8744   2c2 9086   RR+crp 9774   [,]cicc 10012   abscabs 11279   -cn->ccncf 15013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-map 6736  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-rp 9775  df-icc 10016  df-seqfrec 10591  df-exp 10682  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-cncf 15014
This theorem is referenced by:  ivthinclemlr  15080
  Copyright terms: Public domain W3C validator