ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemlopn Unicode version

Theorem ivthinclemlopn 14007
Description: Lemma for ivthinc 14014. The lower cut is open. (Contributed by Jim Kingdon, 6-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
ivthinclemlopn.q  |-  ( ph  ->  Q  e.  L )
Assertion
Ref Expression
ivthinclemlopn  |-  ( ph  ->  E. r  e.  L  Q  <  r )
Distinct variable groups:    w, A    x, A, y    w, B    x, B, y    w, F    x, F, y    L, r    Q, r    w, Q    x, Q, y    w, U    ph, x, y
Allowed substitution hints:    ph( w, r)    A( r)    B( r)    D( x, y, w, r)    R( x, y, w, r)    U( x, y, r)    F( r)    L( x, y, w)

Proof of Theorem ivthinclemlopn
Dummy variables  z  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.7 . . 3  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
2 ivth.5 . . . 4  |-  ( ph  ->  ( A [,] B
)  C_  D )
3 ivthinclemlopn.q . . . . . 6  |-  ( ph  ->  Q  e.  L )
4 fveq2 5515 . . . . . . . 8  |-  ( w  =  Q  ->  ( F `  w )  =  ( F `  Q ) )
54breq1d 4013 . . . . . . 7  |-  ( w  =  Q  ->  (
( F `  w
)  <  U  <->  ( F `  Q )  <  U
) )
6 ivthinclem.l . . . . . . 7  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
75, 6elrab2 2896 . . . . . 6  |-  ( Q  e.  L  <->  ( Q  e.  ( A [,] B
)  /\  ( F `  Q )  <  U
) )
83, 7sylib 122 . . . . 5  |-  ( ph  ->  ( Q  e.  ( A [,] B )  /\  ( F `  Q )  <  U
) )
98simpld 112 . . . 4  |-  ( ph  ->  Q  e.  ( A [,] B ) )
102, 9sseldd 3156 . . 3  |-  ( ph  ->  Q  e.  D )
11 ivth.3 . . . . 5  |-  ( ph  ->  U  e.  RR )
12 fveq2 5515 . . . . . . 7  |-  ( x  =  Q  ->  ( F `  x )  =  ( F `  Q ) )
1312eleq1d 2246 . . . . . 6  |-  ( x  =  Q  ->  (
( F `  x
)  e.  RR  <->  ( F `  Q )  e.  RR ) )
14 ivth.8 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
1514ralrimiva 2550 . . . . . 6  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
1613, 15, 9rspcdva 2846 . . . . 5  |-  ( ph  ->  ( F `  Q
)  e.  RR )
1711, 16resubcld 8336 . . . 4  |-  ( ph  ->  ( U  -  ( F `  Q )
)  e.  RR )
188simprd 114 . . . . 5  |-  ( ph  ->  ( F `  Q
)  <  U )
1916, 11posdifd 8487 . . . . 5  |-  ( ph  ->  ( ( F `  Q )  <  U  <->  0  <  ( U  -  ( F `  Q ) ) ) )
2018, 19mpbid 147 . . . 4  |-  ( ph  ->  0  <  ( U  -  ( F `  Q ) ) )
2117, 20elrpd 9691 . . 3  |-  ( ph  ->  ( U  -  ( F `  Q )
)  e.  RR+ )
22 cncfi 13958 . . 3  |-  ( ( F  e.  ( D
-cn-> CC )  /\  Q  e.  D  /\  ( U  -  ( F `  Q ) )  e.  RR+ )  ->  E. d  e.  RR+  A. z  e.  D  ( ( abs `  ( z  -  Q
) )  <  d  ->  ( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) )
231, 10, 21, 22syl3anc 1238 . 2  |-  ( ph  ->  E. d  e.  RR+  A. z  e.  D  ( ( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) )
24 ivth.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
25 ivth.2 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
26 elicc2 9936 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Q  e.  ( A [,] B )  <-> 
( Q  e.  RR  /\  A  <_  Q  /\  Q  <_  B ) ) )
2724, 25, 26syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( Q  e.  ( A [,] B )  <-> 
( Q  e.  RR  /\  A  <_  Q  /\  Q  <_  B ) ) )
289, 27mpbid 147 . . . . . . . 8  |-  ( ph  ->  ( Q  e.  RR  /\  A  <_  Q  /\  Q  <_  B ) )
2928simp1d 1009 . . . . . . 7  |-  ( ph  ->  Q  e.  RR )
3029adantr 276 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  Q  e.  RR )
31 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  d  e.  RR+ )
3231rphalfcld 9707 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
d  /  2 )  e.  RR+ )
3332rpred 9694 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
d  /  2 )  e.  RR )
3430, 33readdcld 7985 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  ( d  /  2 ) )  e.  RR )
3524adantr 276 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  A  e.  RR )
3628simp2d 1010 . . . . . . 7  |-  ( ph  ->  A  <_  Q )
3736adantr 276 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  A  <_  Q )
3830, 32ltaddrpd 9728 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  Q  <  ( Q  +  ( d  /  2 ) ) )
3930, 34, 38ltled 8074 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  Q  <_  ( Q  +  ( d  /  2 ) ) )
4035, 30, 34, 37, 39letrd 8079 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  A  <_  ( Q  +  ( d  /  2 ) ) )
4125adantr 276 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  B  e.  RR )
4231rpred 9694 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  d  e.  RR )
4330, 42readdcld 7985 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  d )  e.  RR )
44 rphalflt 9681 . . . . . . . . 9  |-  ( d  e.  RR+  ->  ( d  /  2 )  < 
d )
4531, 44syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
d  /  2 )  <  d )
4633, 42, 30, 45ltadd2dd 8377 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  ( d  /  2 ) )  <  ( Q  +  d ) )
4729ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  Q  e.  RR )
4831adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  d  e.  RR+ )
4948rpred 9694 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  d  e.  RR )
5047, 49resubcld 8336 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( Q  -  d )  e.  RR )
5125ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  B  e.  RR )
5247, 48ltsubrpd 9727 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( Q  -  d )  <  Q )
5328simp3d 1011 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Q  <_  B )
5453ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  Q  <_  B )
5550, 47, 51, 52, 54ltletrd 8378 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( Q  -  d )  <  B )
56 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  B  <  ( Q  +  d ) )
5751, 47, 49absdifltd 11182 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  (
( abs `  ( B  -  Q )
)  <  d  <->  ( ( Q  -  d )  <  B  /\  B  < 
( Q  +  d ) ) ) )
5855, 56, 57mpbir2and 944 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( abs `  ( B  -  Q ) )  < 
d )
59 fvoveq1 5897 . . . . . . . . . . . . . . . . 17  |-  ( z  =  B  ->  ( abs `  ( z  -  Q ) )  =  ( abs `  ( B  -  Q )
) )
6059breq1d 4013 . . . . . . . . . . . . . . . 16  |-  ( z  =  B  ->  (
( abs `  (
z  -  Q ) )  <  d  <->  ( abs `  ( B  -  Q
) )  <  d
) )
6160imbrov2fvoveq 5899 . . . . . . . . . . . . . . 15  |-  ( z  =  B  ->  (
( ( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) )  <-> 
( ( abs `  ( B  -  Q )
)  <  d  ->  ( abs `  ( ( F `  B )  -  ( F `  Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )
62 simplrr 536 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) )
6324rexrd 8005 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  e.  RR* )
6425rexrd 8005 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  B  e.  RR* )
65 ivth.4 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A  <  B )
6624, 25, 65ltled 8074 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  <_  B )
67 ubicc2 9983 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
6863, 64, 66, 67syl3anc 1238 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  ( A [,] B ) )
692, 68sseldd 3156 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  D )
7069ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  B  e.  D )
7161, 62, 70rspcdva 2846 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  (
( abs `  ( B  -  Q )
)  <  d  ->  ( abs `  ( ( F `  B )  -  ( F `  Q ) ) )  <  ( U  -  ( F `  Q ) ) ) )
7258, 71mpd 13 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( abs `  ( ( F `
 B )  -  ( F `  Q ) ) )  <  ( U  -  ( F `  Q ) ) )
73 fveq2 5515 . . . . . . . . . . . . . . . . 17  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
7473eleq1d 2246 . . . . . . . . . . . . . . . 16  |-  ( x  =  B  ->  (
( F `  x
)  e.  RR  <->  ( F `  B )  e.  RR ) )
7515adantr 276 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  A. x  e.  ( A [,] B
) ( F `  x )  e.  RR )
7668adantr 276 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  B  e.  ( A [,] B
) )
7774, 75, 76rspcdva 2846 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( F `  B )  e.  RR )
7877adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( F `  B )  e.  RR )
7916ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( F `  Q )  e.  RR )
8017ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( U  -  ( F `  Q ) )  e.  RR )
8178, 79, 80absdifltd 11182 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  (
( abs `  (
( F `  B
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) )  <->  ( (
( F `  Q
)  -  ( U  -  ( F `  Q ) ) )  <  ( F `  B )  /\  ( F `  B )  <  ( ( F `  Q )  +  ( U  -  ( F `
 Q ) ) ) ) ) )
8272, 81mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  (
( ( F `  Q )  -  ( U  -  ( F `  Q ) ) )  <  ( F `  B )  /\  ( F `  B )  <  ( ( F `  Q )  +  ( U  -  ( F `
 Q ) ) ) ) )
8382simprd 114 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( F `  B )  <  ( ( F `  Q )  +  ( U  -  ( F `
 Q ) ) ) )
8479recnd 7984 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( F `  Q )  e.  CC )
8511recnd 7984 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  CC )
8685ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  U  e.  CC )
8784, 86pncan3d 8269 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  (
( F `  Q
)  +  ( U  -  ( F `  Q ) ) )  =  U )
8883, 87breqtrd 4029 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  ( F `  B )  <  U )
89 ivth.9 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
9089simprd 114 . . . . . . . . . . 11  |-  ( ph  ->  U  <  ( F `
 B ) )
9190ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  U  <  ( F `  B
) )
9288, 91jca 306 . . . . . . . . 9  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  (
( F `  B
)  <  U  /\  U  <  ( F `  B ) ) )
9311ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  U  e.  RR )
94 ltnsym2 8046 . . . . . . . . . 10  |-  ( ( ( F `  B
)  e.  RR  /\  U  e.  RR )  ->  -.  ( ( F `
 B )  < 
U  /\  U  <  ( F `  B ) ) )
9578, 93, 94syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  (
d  e.  RR+  /\  A. z  e.  D  (
( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )  /\  B  <  ( Q  +  d ) )  ->  -.  ( ( F `  B )  <  U  /\  U  <  ( F `
 B ) ) )
9692, 95pm2.65da 661 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  -.  B  <  ( Q  +  d ) )
9743, 41, 96nltled 8076 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  d )  <_  B )
9834, 43, 41, 46, 97ltletrd 8378 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  ( d  /  2 ) )  <  B )
9934, 41, 98ltled 8074 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  ( d  /  2 ) )  <_  B )
100 elicc2 9936 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( Q  +  ( d  /  2
) )  e.  ( A [,] B )  <-> 
( ( Q  +  ( d  /  2
) )  e.  RR  /\  A  <_  ( Q  +  ( d  / 
2 ) )  /\  ( Q  +  (
d  /  2 ) )  <_  B )
) )
10135, 41, 100syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
( Q  +  ( d  /  2 ) )  e.  ( A [,] B )  <->  ( ( Q  +  ( d  /  2 ) )  e.  RR  /\  A  <_  ( Q  +  ( d  /  2 ) )  /\  ( Q  +  ( d  / 
2 ) )  <_  B ) ) )
10234, 40, 99, 101mpbir3and 1180 . . . 4  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  ( d  /  2 ) )  e.  ( A [,] B ) )
10316adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( F `  Q )  e.  RR )
104 fveq2 5515 . . . . . . . . 9  |-  ( x  =  ( Q  +  ( d  /  2
) )  ->  ( F `  x )  =  ( F `  ( Q  +  (
d  /  2 ) ) ) )
105104eleq1d 2246 . . . . . . . 8  |-  ( x  =  ( Q  +  ( d  /  2
) )  ->  (
( F `  x
)  e.  RR  <->  ( F `  ( Q  +  ( d  /  2 ) ) )  e.  RR ) )
106105, 75, 102rspcdva 2846 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( F `  ( Q  +  ( d  / 
2 ) ) )  e.  RR )
107 breq2 4007 . . . . . . . . . . 11  |-  ( y  =  ( Q  +  ( d  /  2
) )  ->  ( Q  <  y  <->  Q  <  ( Q  +  ( d  /  2 ) ) ) )
108 fveq2 5515 . . . . . . . . . . . 12  |-  ( y  =  ( Q  +  ( d  /  2
) )  ->  ( F `  y )  =  ( F `  ( Q  +  (
d  /  2 ) ) ) )
109108breq2d 4015 . . . . . . . . . . 11  |-  ( y  =  ( Q  +  ( d  /  2
) )  ->  (
( F `  Q
)  <  ( F `  y )  <->  ( F `  Q )  <  ( F `  ( Q  +  ( d  / 
2 ) ) ) ) )
110107, 109imbi12d 234 . . . . . . . . . 10  |-  ( y  =  ( Q  +  ( d  /  2
) )  ->  (
( Q  <  y  ->  ( F `  Q
)  <  ( F `  y ) )  <->  ( Q  <  ( Q  +  ( d  /  2 ) )  ->  ( F `  Q )  <  ( F `  ( Q  +  ( d  / 
2 ) ) ) ) ) )
111 breq1 4006 . . . . . . . . . . . . . 14  |-  ( x  =  Q  ->  (
x  <  y  <->  Q  <  y ) )
11212breq1d 4013 . . . . . . . . . . . . . 14  |-  ( x  =  Q  ->  (
( F `  x
)  <  ( F `  y )  <->  ( F `  Q )  <  ( F `  y )
) )
113111, 112imbi12d 234 . . . . . . . . . . . . 13  |-  ( x  =  Q  ->  (
( x  <  y  ->  ( F `  x
)  <  ( F `  y ) )  <->  ( Q  <  y  ->  ( F `  Q )  <  ( F `  y )
) ) )
114113ralbidv 2477 . . . . . . . . . . . 12  |-  ( x  =  Q  ->  ( A. y  e.  ( A [,] B ) ( x  <  y  -> 
( F `  x
)  <  ( F `  y ) )  <->  A. y  e.  ( A [,] B
) ( Q  < 
y  ->  ( F `  Q )  <  ( F `  y )
) ) )
115 ivthinc.i . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
116115expr 375 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  y  e.  ( A [,] B
) )  ->  (
x  <  y  ->  ( F `  x )  <  ( F `  y ) ) )
117116ralrimiva 2550 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A. y  e.  ( A [,] B
) ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )
118117ralrimiva 2550 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
119114, 118, 9rspcdva 2846 . . . . . . . . . . 11  |-  ( ph  ->  A. y  e.  ( A [,] B ) ( Q  <  y  ->  ( F `  Q
)  <  ( F `  y ) ) )
120119adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  A. y  e.  ( A [,] B
) ( Q  < 
y  ->  ( F `  Q )  <  ( F `  y )
) )
121110, 120, 102rspcdva 2846 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  <  ( Q  +  ( d  /  2
) )  ->  ( F `  Q )  <  ( F `  ( Q  +  ( d  /  2 ) ) ) ) )
12238, 121mpd 13 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( F `  Q )  <  ( F `  ( Q  +  ( d  /  2 ) ) ) )
123103, 106, 122ltled 8074 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( F `  Q )  <_  ( F `  ( Q  +  ( d  /  2 ) ) ) )
124103, 106, 123abssubge0d 11180 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( abs `  ( ( F `
 ( Q  +  ( d  /  2
) ) )  -  ( F `  Q ) ) )  =  ( ( F `  ( Q  +  ( d  /  2 ) ) )  -  ( F `
 Q ) ) )
12530recnd 7984 . . . . . . . . . . 11  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  Q  e.  CC )
12633recnd 7984 . . . . . . . . . . 11  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
d  /  2 )  e.  CC )
127125, 126pncan2d 8268 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
( Q  +  ( d  /  2 ) )  -  Q )  =  ( d  / 
2 ) )
128127fveq2d 5519 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( abs `  ( ( Q  +  ( d  / 
2 ) )  -  Q ) )  =  ( abs `  (
d  /  2 ) ) )
12932rpge0d 9698 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  0  <_  ( d  /  2
) )
13033, 129absidd 11171 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( abs `  ( d  / 
2 ) )  =  ( d  /  2
) )
131128, 130eqtrd 2210 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( abs `  ( ( Q  +  ( d  / 
2 ) )  -  Q ) )  =  ( d  /  2
) )
132131, 45eqbrtrd 4025 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( abs `  ( ( Q  +  ( d  / 
2 ) )  -  Q ) )  < 
d )
133 fvoveq1 5897 . . . . . . . . . 10  |-  ( z  =  ( Q  +  ( d  /  2
) )  ->  ( abs `  ( z  -  Q ) )  =  ( abs `  (
( Q  +  ( d  /  2 ) )  -  Q ) ) )
134133breq1d 4013 . . . . . . . . 9  |-  ( z  =  ( Q  +  ( d  /  2
) )  ->  (
( abs `  (
z  -  Q ) )  <  d  <->  ( abs `  ( ( Q  +  ( d  /  2
) )  -  Q
) )  <  d
) )
135134imbrov2fvoveq 5899 . . . . . . . 8  |-  ( z  =  ( Q  +  ( d  /  2
) )  ->  (
( ( abs `  (
z  -  Q ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) )  <-> 
( ( abs `  (
( Q  +  ( d  /  2 ) )  -  Q ) )  <  d  -> 
( abs `  (
( F `  ( Q  +  ( d  /  2 ) ) )  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) ) )
136 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) )
1372adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( A [,] B )  C_  D )
138137, 102sseldd 3156 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  ( d  /  2 ) )  e.  D )
139135, 136, 138rspcdva 2846 . . . . . . 7  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
( abs `  (
( Q  +  ( d  /  2 ) )  -  Q ) )  <  d  -> 
( abs `  (
( F `  ( Q  +  ( d  /  2 ) ) )  -  ( F `
 Q ) ) )  <  ( U  -  ( F `  Q ) ) ) )
140132, 139mpd 13 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( abs `  ( ( F `
 ( Q  +  ( d  /  2
) ) )  -  ( F `  Q ) ) )  <  ( U  -  ( F `  Q ) ) )
141124, 140eqbrtrrd 4027 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
( F `  ( Q  +  ( d  /  2 ) ) )  -  ( F `
 Q ) )  <  ( U  -  ( F `  Q ) ) )
14211adantr 276 . . . . . 6  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  U  e.  RR )
143106, 142, 103ltsub1d 8509 . . . . 5  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  (
( F `  ( Q  +  ( d  /  2 ) ) )  <  U  <->  ( ( F `  ( Q  +  ( d  / 
2 ) ) )  -  ( F `  Q ) )  < 
( U  -  ( F `  Q )
) ) )
144141, 143mpbird 167 . . . 4  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( F `  ( Q  +  ( d  / 
2 ) ) )  <  U )
145 fveq2 5515 . . . . . 6  |-  ( w  =  ( Q  +  ( d  /  2
) )  ->  ( F `  w )  =  ( F `  ( Q  +  (
d  /  2 ) ) ) )
146145breq1d 4013 . . . . 5  |-  ( w  =  ( Q  +  ( d  /  2
) )  ->  (
( F `  w
)  <  U  <->  ( F `  ( Q  +  ( d  /  2 ) ) )  <  U
) )
147146, 6elrab2 2896 . . . 4  |-  ( ( Q  +  ( d  /  2 ) )  e.  L  <->  ( ( Q  +  ( d  /  2 ) )  e.  ( A [,] B )  /\  ( F `  ( Q  +  ( d  / 
2 ) ) )  <  U ) )
148102, 144, 147sylanbrc 417 . . 3  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  ( Q  +  ( d  /  2 ) )  e.  L )
149 breq2 4007 . . . 4  |-  ( r  =  ( Q  +  ( d  /  2
) )  ->  ( Q  <  r  <->  Q  <  ( Q  +  ( d  /  2 ) ) ) )
150149rspcev 2841 . . 3  |-  ( ( ( Q  +  ( d  /  2 ) )  e.  L  /\  Q  <  ( Q  +  ( d  /  2
) ) )  ->  E. r  e.  L  Q  <  r )
151148, 38, 150syl2anc 411 . 2  |-  ( (
ph  /\  ( d  e.  RR+  /\  A. z  e.  D  ( ( abs `  ( z  -  Q ) )  < 
d  ->  ( abs `  ( ( F `  z )  -  ( F `  Q )
) )  <  ( U  -  ( F `  Q ) ) ) ) )  ->  E. r  e.  L  Q  <  r )
15223, 151rexlimddv 2599 1  |-  ( ph  ->  E. r  e.  L  Q  <  r )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459    C_ wss 3129   class class class wbr 4003   ` cfv 5216  (class class class)co 5874   CCcc 7808   RRcr 7809   0cc0 7810    + caddc 7813   RR*cxr 7989    < clt 7990    <_ cle 7991    - cmin 8126    / cdiv 8627   2c2 8968   RR+crp 9651   [,]cicc 9889   abscabs 11001   -cn->ccncf 13950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-map 6649  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-3 8977  df-4 8978  df-n0 9175  df-z 9252  df-uz 9527  df-rp 9652  df-icc 9893  df-seqfrec 10443  df-exp 10517  df-cj 10846  df-re 10847  df-im 10848  df-rsqrt 11002  df-abs 11003  df-cncf 13951
This theorem is referenced by:  ivthinclemlr  14008
  Copyright terms: Public domain W3C validator