ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcimolemlt Unicode version

Theorem limcimolemlt 13386
Description: Lemma for limcimo 13387. (Contributed by Jim Kingdon, 3-Jul-2023.)
Hypotheses
Ref Expression
limcflf.f  |-  ( ph  ->  F : A --> CC )
limcflf.a  |-  ( ph  ->  A  C_  CC )
limcimo.b  |-  ( ph  ->  B  e.  CC )
limcimo.bc  |-  ( ph  ->  B  e.  C )
limcimo.bs  |-  ( ph  ->  B  e.  S )
limcimo.c  |-  ( ph  ->  C  e.  ( Kt  S ) )
limcimo.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
limcimo.ca  |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )
limcflfcntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
limcimo.d  |-  ( ph  ->  D  e.  RR+ )
limcimo.x  |-  ( ph  ->  X  e.  ( F lim
CC  B ) )
limcimo.y  |-  ( ph  ->  Y  e.  ( F lim
CC  B ) )
limcimo.z  |-  ( ph  ->  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  D )  ->  ( abs `  (
( F `  z
)  -  X ) )  <  ( ( abs `  ( X  -  Y ) )  /  2 ) ) )
limcimo.g  |-  ( ph  ->  G  e.  RR+ )
limcimo.w  |-  ( ph  ->  A. w  e.  A  ( ( w #  B  /\  ( abs `  (
w  -  B ) )  <  G )  ->  ( abs `  (
( F `  w
)  -  Y ) )  <  ( ( abs `  ( X  -  Y ) )  /  2 ) ) )
Assertion
Ref Expression
limcimolemlt  |-  ( ph  ->  ( abs `  ( X  -  Y )
)  <  ( abs `  ( X  -  Y
) ) )
Distinct variable groups:    w, A    z, A    B, q    w, B   
z, B    C, q    z, D    w, F    z, F    w, G    w, X    z, X    w, Y    z, Y
Allowed substitution hints:    ph( z, w, q)    A( q)    C( z, w)    D( w, q)    S( z, w, q)    F( q)    G( z, q)    K( z, w, q)    X( q)    Y( q)

Proof of Theorem limcimolemlt
Dummy variables  a  b  c  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnxmet 13284 . . . 4  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
2 ax-resscn 7853 . . . . . . 7  |-  RR  C_  CC
3 sseq1 3170 . . . . . . 7  |-  ( S  =  RR  ->  ( S  C_  CC  <->  RR  C_  CC ) )
42, 3mpbiri 167 . . . . . 6  |-  ( S  =  RR  ->  S  C_  CC )
54adantl 275 . . . . 5  |-  ( (
ph  /\  S  =  RR )  ->  S  C_  CC )
6 eqimss 3201 . . . . . 6  |-  ( S  =  CC  ->  S  C_  CC )
76adantl 275 . . . . 5  |-  ( (
ph  /\  S  =  CC )  ->  S  C_  CC )
8 limcimo.s . . . . . 6  |-  ( ph  ->  S  e.  { RR ,  CC } )
9 elpri 3604 . . . . . 6  |-  ( S  e.  { RR ,  CC }  ->  ( S  =  RR  \/  S  =  CC ) )
108, 9syl 14 . . . . 5  |-  ( ph  ->  ( S  =  RR  \/  S  =  CC ) )
115, 7, 10mpjaodan 793 . . . 4  |-  ( ph  ->  S  C_  CC )
12 xmetres2 13132 . . . 4  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  S  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( S  X.  S ) )  e.  ( *Met `  S ) )
131, 11, 12sylancr 412 . . 3  |-  ( ph  ->  ( ( abs  o.  -  )  |`  ( S  X.  S ) )  e.  ( *Met `  S ) )
14 limcimo.c . . . 4  |-  ( ph  ->  C  e.  ( Kt  S ) )
15 eqid 2170 . . . . . 6  |-  ( ( abs  o.  -  )  |`  ( S  X.  S
) )  =  ( ( abs  o.  -  )  |`  ( S  X.  S ) )
16 limcflfcntop.k . . . . . 6  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
17 eqid 2170 . . . . . 6  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )
1815, 16, 17metrest 13259 . . . . 5  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  S  C_  CC )  -> 
( Kt  S )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( S  X.  S ) ) ) )
191, 11, 18sylancr 412 . . . 4  |-  ( ph  ->  ( Kt  S )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( S  X.  S ) ) ) )
2014, 19eleqtrd 2249 . . 3  |-  ( ph  ->  C  e.  ( MetOpen `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) )
21 limcimo.bc . . 3  |-  ( ph  ->  B  e.  C )
22 limcimo.d . . . 4  |-  ( ph  ->  D  e.  RR+ )
23 limcimo.g . . . 4  |-  ( ph  ->  G  e.  RR+ )
24 rpmincl 11188 . . . 4  |-  ( ( D  e.  RR+  /\  G  e.  RR+ )  -> inf ( { D ,  G } ,  RR ,  <  )  e.  RR+ )
2522, 23, 24syl2anc 409 . . 3  |-  ( ph  -> inf ( { D ,  G } ,  RR ,  <  )  e.  RR+ )
2617mopni3 13237 . . 3  |-  ( ( ( ( ( abs 
o.  -  )  |`  ( S  X.  S ) )  e.  ( *Met `  S )  /\  C  e.  ( MetOpen `  ( ( abs  o.  -  )  |`  ( S  X.  S
) ) )  /\  B  e.  C )  /\ inf ( { D ,  G } ,  RR ,  <  )  e.  RR+ )  ->  E. r  e.  RR+  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) r )  C_  C ) )
2713, 20, 21, 25, 26syl31anc 1236 . 2  |-  ( ph  ->  E. r  e.  RR+  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) r )  C_  C ) )
28 limcimo.x . . . . . 6  |-  ( ph  ->  X  e.  ( F lim
CC  B ) )
29 limcrcl 13380 . . . . . . . . 9  |-  ( X  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
3028, 29syl 14 . . . . . . . 8  |-  ( ph  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
3130simp1d 1004 . . . . . . 7  |-  ( ph  ->  F : dom  F --> CC )
3230simp2d 1005 . . . . . . 7  |-  ( ph  ->  dom  F  C_  CC )
33 limcimo.b . . . . . . 7  |-  ( ph  ->  B  e.  CC )
3431, 32, 33ellimc3ap 13383 . . . . . 6  |-  ( ph  ->  ( X  e.  ( F lim CC  B )  <-> 
( X  e.  CC  /\ 
A. a  e.  RR+  E. b  e.  RR+  A. c  e.  dom  F ( ( c #  B  /\  ( abs `  ( c  -  B ) )  < 
b )  ->  ( abs `  ( ( F `
 c )  -  X ) )  < 
a ) ) ) )
3528, 34mpbid 146 . . . . 5  |-  ( ph  ->  ( X  e.  CC  /\ 
A. a  e.  RR+  E. b  e.  RR+  A. c  e.  dom  F ( ( c #  B  /\  ( abs `  ( c  -  B ) )  < 
b )  ->  ( abs `  ( ( F `
 c )  -  X ) )  < 
a ) ) )
3635simpld 111 . . . 4  |-  ( ph  ->  X  e.  CC )
3736adantr 274 . . 3  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  X  e.  CC )
38 limcimo.y . . . . . 6  |-  ( ph  ->  Y  e.  ( F lim
CC  B ) )
3931, 32, 33ellimc3ap 13383 . . . . . 6  |-  ( ph  ->  ( Y  e.  ( F lim CC  B )  <-> 
( Y  e.  CC  /\ 
A. a  e.  RR+  E. b  e.  RR+  A. c  e.  dom  F ( ( c #  B  /\  ( abs `  ( c  -  B ) )  < 
b )  ->  ( abs `  ( ( F `
 c )  -  Y ) )  < 
a ) ) ) )
4038, 39mpbid 146 . . . . 5  |-  ( ph  ->  ( Y  e.  CC  /\ 
A. a  e.  RR+  E. b  e.  RR+  A. c  e.  dom  F ( ( c #  B  /\  ( abs `  ( c  -  B ) )  < 
b )  ->  ( abs `  ( ( F `
 c )  -  Y ) )  < 
a ) ) )
4140simpld 111 . . . 4  |-  ( ph  ->  Y  e.  CC )
4241adantr 274 . . 3  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  Y  e.  CC )
43 limcflf.f . . . . 5  |-  ( ph  ->  F : A --> CC )
4443adantr 274 . . . 4  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  F : A --> CC )
45 breq1 3990 . . . . . 6  |-  ( q  =  ( B  +  ( r  /  2
) )  ->  (
q #  B  <->  ( B  +  ( r  / 
2 ) ) #  B
) )
46 simprrr 535 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
47 limcimo.bs . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  S )
4847adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  B  e.  S )
4947ad2antrr 485 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  (
r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) r )  C_  C ) ) )  /\  S  =  RR )  ->  B  e.  S )
50 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  (
r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) r )  C_  C ) ) )  /\  S  =  RR )  ->  S  =  RR )
5149, 50eleqtrd 2249 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  (
r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) r )  C_  C ) ) )  /\  S  =  RR )  ->  B  e.  RR )
52 simprl 526 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  r  e.  RR+ )
5352rphalfcld 9653 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
r  /  2 )  e.  RR+ )
5453adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  (
r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) r )  C_  C ) ) )  /\  S  =  RR )  ->  ( r  /  2 )  e.  RR+ )
5554rpred 9640 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  (
r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) r )  C_  C ) ) )  /\  S  =  RR )  ->  ( r  /  2 )  e.  RR )
5651, 55readdcld 7936 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  (
r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) r )  C_  C ) ) )  /\  S  =  RR )  ->  ( B  +  ( r  / 
2 ) )  e.  RR )
5756, 50eleqtrrd 2250 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  (
r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) r )  C_  C ) ) )  /\  S  =  RR )  ->  ( B  +  ( r  / 
2 ) )  e.  S )
5833ad2antrr 485 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  (
r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) r )  C_  C ) ) )  /\  S  =  CC )  ->  B  e.  CC )
5953adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  (
r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) r )  C_  C ) ) )  /\  S  =  CC )  ->  ( r  /  2 )  e.  RR+ )
6059rpcnd 9642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  (
r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) r )  C_  C ) ) )  /\  S  =  CC )  ->  ( r  /  2 )  e.  CC )
6158, 60addcld 7926 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  (
r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) r )  C_  C ) ) )  /\  S  =  CC )  ->  ( B  +  ( r  / 
2 ) )  e.  CC )
62 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  (
r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) r )  C_  C ) ) )  /\  S  =  CC )  ->  S  =  CC )
6361, 62eleqtrrd 2250 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
r  e.  RR+  /\  (
r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ) r )  C_  C ) ) )  /\  S  =  CC )  ->  ( B  +  ( r  / 
2 ) )  e.  S )
6410adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( S  =  RR  \/  S  =  CC )
)
6557, 63, 64mpjaodan 793 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( B  +  ( r  /  2 ) )  e.  S )
6648, 65ovresd 5990 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( B ( ( abs 
o.  -  )  |`  ( S  X.  S ) ) ( B  +  ( r  /  2 ) ) )  =  ( B ( abs  o.  -  ) ( B  +  ( r  / 
2 ) ) ) )
6733adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  B  e.  CC )
6853rpcnd 9642 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
r  /  2 )  e.  CC )
6967, 68addcld 7926 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( B  +  ( r  /  2 ) )  e.  CC )
70 eqid 2170 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
7170cnmetdval 13282 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  ( B  +  (
r  /  2 ) )  e.  CC )  ->  ( B ( abs  o.  -  )
( B  +  ( r  /  2 ) ) )  =  ( abs `  ( B  -  ( B  +  ( r  /  2
) ) ) ) )
7267, 69, 71syl2anc 409 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( B ( abs  o.  -  ) ( B  +  ( r  / 
2 ) ) )  =  ( abs `  ( B  -  ( B  +  ( r  / 
2 ) ) ) ) )
7367, 67, 68subsub4d 8248 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
( B  -  B
)  -  ( r  /  2 ) )  =  ( B  -  ( B  +  (
r  /  2 ) ) ) )
7467subidd 8205 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( B  -  B )  =  0 )
7574oveq1d 5865 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
( B  -  B
)  -  ( r  /  2 ) )  =  ( 0  -  ( r  /  2
) ) )
7673, 75eqtr3d 2205 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( B  -  ( B  +  ( r  / 
2 ) ) )  =  ( 0  -  ( r  /  2
) ) )
7776fveq2d 5498 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( B  -  ( B  +  (
r  /  2 ) ) ) )  =  ( abs `  (
0  -  ( r  /  2 ) ) ) )
78 0cnd 7900 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  0  e.  CC )
7978, 68abssubd 11144 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( 0  -  ( r  /  2
) ) )  =  ( abs `  (
( r  /  2
)  -  0 ) ) )
8077, 79eqtrd 2203 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( B  -  ( B  +  (
r  /  2 ) ) ) )  =  ( abs `  (
( r  /  2
)  -  0 ) ) )
8168subid1d 8206 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
( r  /  2
)  -  0 )  =  ( r  / 
2 ) )
8281fveq2d 5498 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( ( r  /  2 )  - 
0 ) )  =  ( abs `  (
r  /  2 ) ) )
8353rpred 9640 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
r  /  2 )  e.  RR )
8453rpge0d 9644 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  0  <_  ( r  /  2
) )
8583, 84absidd 11118 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( r  / 
2 ) )  =  ( r  /  2
) )
8680, 82, 853eqtrd 2207 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( B  -  ( B  +  (
r  /  2 ) ) ) )  =  ( r  /  2
) )
8766, 72, 863eqtrd 2207 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( B ( ( abs 
o.  -  )  |`  ( S  X.  S ) ) ( B  +  ( r  /  2 ) ) )  =  ( r  /  2 ) )
88 rphalflt 9627 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  ( r  /  2 )  < 
r )
8988ad2antrl 487 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
r  /  2 )  <  r )
9087, 89eqbrtrd 4009 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( B ( ( abs 
o.  -  )  |`  ( S  X.  S ) ) ( B  +  ( r  /  2 ) ) )  <  r
)
9113adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
( abs  o.  -  )  |`  ( S  X.  S
) )  e.  ( *Met `  S
) )
92 rpxr 9605 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  r  e. 
RR* )
9392ad2antrl 487 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  r  e.  RR* )
94 elbl2 13146 . . . . . . . . 9  |-  ( ( ( ( ( abs 
o.  -  )  |`  ( S  X.  S ) )  e.  ( *Met `  S )  /\  r  e.  RR* )  /\  ( B  e.  S  /\  ( B  +  (
r  /  2 ) )  e.  S ) )  ->  ( ( B  +  ( r  /  2 ) )  e.  ( B (
ball `  ( ( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  <->  ( B ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ( B  +  ( r  /  2 ) ) )  <  r ) )
9591, 93, 48, 65, 94syl22anc 1234 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
( B  +  ( r  /  2 ) )  e.  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  <->  ( B ( ( abs  o.  -  )  |`  ( S  X.  S ) ) ( B  +  ( r  /  2 ) ) )  <  r ) )
9690, 95mpbird 166 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( B  +  ( r  /  2 ) )  e.  ( B (
ball `  ( ( abs  o.  -  )  |`  ( S  X.  S
) ) ) r ) )
9746, 96sseldd 3148 . . . . . 6  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( B  +  ( r  /  2 ) )  e.  C )
9853rpap0d 9646 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
r  /  2 ) #  0 )
9967, 67negsubdid 8232 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  -u ( B  -  B )  =  ( -u B  +  B ) )
10074negeqd 8101 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  -u ( B  -  B )  =  -u 0 )
101 neg0 8152 . . . . . . . . . . . 12  |-  -u 0  =  0
102100, 101eqtrdi 2219 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  -u ( B  -  B )  =  0 )
10399, 102eqtr3d 2205 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( -u B  +  B )  =  0 )
104103oveq1d 5865 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
( -u B  +  B
)  +  ( r  /  2 ) )  =  ( 0  +  ( r  /  2
) ) )
10567negcld 8204 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  -u B  e.  CC )
106105, 67, 68addassd 7929 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
( -u B  +  B
)  +  ( r  /  2 ) )  =  ( -u B  +  ( B  +  ( r  /  2
) ) ) )
10768addid2d 8056 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
0  +  ( r  /  2 ) )  =  ( r  / 
2 ) )
108104, 106, 1073eqtr3d 2211 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( -u B  +  ( B  +  ( r  / 
2 ) ) )  =  ( r  / 
2 ) )
10998, 108, 1033brtr4d 4019 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( -u B  +  ( B  +  ( r  / 
2 ) ) ) #  ( -u B  +  B ) )
110 apadd2 8515 . . . . . . . 8  |-  ( ( ( B  +  ( r  /  2 ) )  e.  CC  /\  B  e.  CC  /\  -u B  e.  CC )  ->  (
( B  +  ( r  /  2 ) ) #  B  <->  ( -u B  +  ( B  +  ( r  /  2
) ) ) #  (
-u B  +  B
) ) )
11169, 67, 105, 110syl3anc 1233 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
( B  +  ( r  /  2 ) ) #  B  <->  ( -u B  +  ( B  +  ( r  /  2
) ) ) #  (
-u B  +  B
) ) )
112109, 111mpbird 166 . . . . . 6  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( B  +  ( r  /  2 ) ) #  B )
11345, 97, 112elrabd 2888 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( B  +  ( r  /  2 ) )  e.  { q  e.  C  |  q #  B } )
114 limcimo.ca . . . . . . 7  |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )
115114sseld 3146 . . . . . 6  |-  ( ph  ->  ( ( B  +  ( r  /  2
) )  e.  {
q  e.  C  | 
q #  B }  ->  ( B  +  ( r  /  2 ) )  e.  A ) )
116115adantr 274 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
( B  +  ( r  /  2 ) )  e.  { q  e.  C  |  q #  B }  ->  ( B  +  ( r  /  2 ) )  e.  A ) )
117113, 116mpd 13 . . . 4  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( B  +  ( r  /  2 ) )  e.  A )
11844, 117ffvelrnd 5629 . . 3  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( F `  ( B  +  ( r  / 
2 ) ) )  e.  CC )
11937, 42subcld 8217 . . . 4  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( X  -  Y )  e.  CC )
120119abscld 11132 . . 3  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( X  -  Y ) )  e.  RR )
12137, 118abssubd 11144 . . . 4  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( X  -  ( F `  ( B  +  ( r  / 
2 ) ) ) ) )  =  ( abs `  ( ( F `  ( B  +  ( r  / 
2 ) ) )  -  X ) ) )
12269, 67subcld 8217 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
( B  +  ( r  /  2 ) )  -  B )  e.  CC )
123122abscld 11132 . . . . . 6  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( ( B  +  ( r  / 
2 ) )  -  B ) )  e.  RR )
12452rpred 9640 . . . . . 6  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  r  e.  RR )
12522rpred 9640 . . . . . . 7  |-  ( ph  ->  D  e.  RR )
126125adantr 274 . . . . . 6  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  D  e.  RR )
12767, 68pncan2d 8219 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
( B  +  ( r  /  2 ) )  -  B )  =  ( r  / 
2 ) )
128127fveq2d 5498 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( ( B  +  ( r  / 
2 ) )  -  B ) )  =  ( abs `  (
r  /  2 ) ) )
129128, 85eqtrd 2203 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( ( B  +  ( r  / 
2 ) )  -  B ) )  =  ( r  /  2
) )
130129, 89eqbrtrd 4009 . . . . . 6  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( ( B  +  ( r  / 
2 ) )  -  B ) )  < 
r )
13123rpred 9640 . . . . . . . . 9  |-  ( ph  ->  G  e.  RR )
132131adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  G  e.  RR )
133 mincl 11181 . . . . . . . 8  |-  ( ( D  e.  RR  /\  G  e.  RR )  -> inf ( { D ,  G } ,  RR ,  <  )  e.  RR )
134126, 132, 133syl2anc 409 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  -> inf ( { D ,  G } ,  RR ,  <  )  e.  RR )
135 simprrl 534 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  r  < inf ( { D ,  G } ,  RR ,  <  ) )
136 min1inf 11182 . . . . . . . 8  |-  ( ( D  e.  RR  /\  G  e.  RR )  -> inf ( { D ,  G } ,  RR ,  <  )  <_  D )
137126, 132, 136syl2anc 409 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  -> inf ( { D ,  G } ,  RR ,  <  )  <_  D )
138124, 134, 126, 135, 137ltletrd 8329 . . . . . 6  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  r  <  D )
139123, 124, 126, 130, 138lttrd 8032 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( ( B  +  ( r  / 
2 ) )  -  B ) )  < 
D )
140 breq1 3990 . . . . . . . 8  |-  ( z  =  ( B  +  ( r  /  2
) )  ->  (
z #  B  <->  ( B  +  ( r  / 
2 ) ) #  B
) )
141 fvoveq1 5873 . . . . . . . . 9  |-  ( z  =  ( B  +  ( r  /  2
) )  ->  ( abs `  ( z  -  B ) )  =  ( abs `  (
( B  +  ( r  /  2 ) )  -  B ) ) )
142141breq1d 3997 . . . . . . . 8  |-  ( z  =  ( B  +  ( r  /  2
) )  ->  (
( abs `  (
z  -  B ) )  <  D  <->  ( abs `  ( ( B  +  ( r  /  2
) )  -  B
) )  <  D
) )
143140, 142anbi12d 470 . . . . . . 7  |-  ( z  =  ( B  +  ( r  /  2
) )  ->  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  D )  <->  ( ( B  +  ( r  /  2 ) ) #  B  /\  ( abs `  ( ( B  +  ( r  /  2
) )  -  B
) )  <  D
) ) )
144143imbrov2fvoveq 5875 . . . . . 6  |-  ( z  =  ( B  +  ( r  /  2
) )  ->  (
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  D )  ->  ( abs `  (
( F `  z
)  -  X ) )  <  ( ( abs `  ( X  -  Y ) )  /  2 ) )  <-> 
( ( ( B  +  ( r  / 
2 ) ) #  B  /\  ( abs `  (
( B  +  ( r  /  2 ) )  -  B ) )  <  D )  ->  ( abs `  (
( F `  ( B  +  ( r  /  2 ) ) )  -  X ) )  <  ( ( abs `  ( X  -  Y ) )  /  2 ) ) ) )
145 limcimo.z . . . . . . 7  |-  ( ph  ->  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  D )  ->  ( abs `  (
( F `  z
)  -  X ) )  <  ( ( abs `  ( X  -  Y ) )  /  2 ) ) )
146145adantr 274 . . . . . 6  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
D )  ->  ( abs `  ( ( F `
 z )  -  X ) )  < 
( ( abs `  ( X  -  Y )
)  /  2 ) ) )
147144, 146, 117rspcdva 2839 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
( ( B  +  ( r  /  2
) ) #  B  /\  ( abs `  ( ( B  +  ( r  /  2 ) )  -  B ) )  <  D )  -> 
( abs `  (
( F `  ( B  +  ( r  /  2 ) ) )  -  X ) )  <  ( ( abs `  ( X  -  Y ) )  /  2 ) ) )
148112, 139, 147mp2and 431 . . . 4  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( ( F `
 ( B  +  ( r  /  2
) ) )  -  X ) )  < 
( ( abs `  ( X  -  Y )
)  /  2 ) )
149121, 148eqbrtrd 4009 . . 3  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( X  -  ( F `  ( B  +  ( r  / 
2 ) ) ) ) )  <  (
( abs `  ( X  -  Y )
)  /  2 ) )
150 min2inf 11183 . . . . . . 7  |-  ( ( D  e.  RR  /\  G  e.  RR )  -> inf ( { D ,  G } ,  RR ,  <  )  <_  G )
151126, 132, 150syl2anc 409 . . . . . 6  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  -> inf ( { D ,  G } ,  RR ,  <  )  <_  G )
152124, 134, 132, 135, 151ltletrd 8329 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  r  <  G )
153123, 124, 132, 130, 152lttrd 8032 . . . 4  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( ( B  +  ( r  / 
2 ) )  -  B ) )  < 
G )
154 breq1 3990 . . . . . . 7  |-  ( w  =  ( B  +  ( r  /  2
) )  ->  (
w #  B  <->  ( B  +  ( r  / 
2 ) ) #  B
) )
155 fvoveq1 5873 . . . . . . . 8  |-  ( w  =  ( B  +  ( r  /  2
) )  ->  ( abs `  ( w  -  B ) )  =  ( abs `  (
( B  +  ( r  /  2 ) )  -  B ) ) )
156155breq1d 3997 . . . . . . 7  |-  ( w  =  ( B  +  ( r  /  2
) )  ->  (
( abs `  (
w  -  B ) )  <  G  <->  ( abs `  ( ( B  +  ( r  /  2
) )  -  B
) )  <  G
) )
157154, 156anbi12d 470 . . . . . 6  |-  ( w  =  ( B  +  ( r  /  2
) )  ->  (
( w #  B  /\  ( abs `  ( w  -  B ) )  <  G )  <->  ( ( B  +  ( r  /  2 ) ) #  B  /\  ( abs `  ( ( B  +  ( r  /  2
) )  -  B
) )  <  G
) ) )
158157imbrov2fvoveq 5875 . . . . 5  |-  ( w  =  ( B  +  ( r  /  2
) )  ->  (
( ( w #  B  /\  ( abs `  (
w  -  B ) )  <  G )  ->  ( abs `  (
( F `  w
)  -  Y ) )  <  ( ( abs `  ( X  -  Y ) )  /  2 ) )  <-> 
( ( ( B  +  ( r  / 
2 ) ) #  B  /\  ( abs `  (
( B  +  ( r  /  2 ) )  -  B ) )  <  G )  ->  ( abs `  (
( F `  ( B  +  ( r  /  2 ) ) )  -  Y ) )  <  ( ( abs `  ( X  -  Y ) )  /  2 ) ) ) )
159 limcimo.w . . . . . 6  |-  ( ph  ->  A. w  e.  A  ( ( w #  B  /\  ( abs `  (
w  -  B ) )  <  G )  ->  ( abs `  (
( F `  w
)  -  Y ) )  <  ( ( abs `  ( X  -  Y ) )  /  2 ) ) )
160159adantr 274 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  A. w  e.  A  ( (
w #  B  /\  ( abs `  ( w  -  B ) )  < 
G )  ->  ( abs `  ( ( F `
 w )  -  Y ) )  < 
( ( abs `  ( X  -  Y )
)  /  2 ) ) )
161158, 160, 117rspcdva 2839 . . . 4  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  (
( ( B  +  ( r  /  2
) ) #  B  /\  ( abs `  ( ( B  +  ( r  /  2 ) )  -  B ) )  <  G )  -> 
( abs `  (
( F `  ( B  +  ( r  /  2 ) ) )  -  Y ) )  <  ( ( abs `  ( X  -  Y ) )  /  2 ) ) )
162112, 153, 161mp2and 431 . . 3  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( ( F `
 ( B  +  ( r  /  2
) ) )  -  Y ) )  < 
( ( abs `  ( X  -  Y )
)  /  2 ) )
16337, 42, 118, 120, 149, 162abs3lemd 11152 . 2  |-  ( (
ph  /\  ( r  e.  RR+  /\  ( r  < inf ( { D ,  G } ,  RR ,  <  )  /\  ( B ( ball `  (
( abs  o.  -  )  |`  ( S  X.  S
) ) ) r )  C_  C )
) )  ->  ( abs `  ( X  -  Y ) )  < 
( abs `  ( X  -  Y )
) )
16427, 163rexlimddv 2592 1  |-  ( ph  ->  ( abs `  ( X  -  Y )
)  <  ( abs `  ( X  -  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452    C_ wss 3121   {cpr 3582   class class class wbr 3987    X. cxp 4607   dom cdm 4609    |` cres 4611    o. ccom 4613   -->wf 5192   ` cfv 5196  (class class class)co 5850  infcinf 6956   CCcc 7759   RRcr 7760   0cc0 7761    + caddc 7764   RR*cxr 7940    < clt 7941    <_ cle 7942    - cmin 8077   -ucneg 8078   # cap 8487    / cdiv 8576   2c2 8916   RR+crp 9597   abscabs 10948   ↾t crest 12566   *Metcxmet 12733   ballcbl 12735   MetOpencmopn 12738   lim CC climc 13376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-map 6624  df-pm 6625  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-xneg 9716  df-xadd 9717  df-seqfrec 10389  df-exp 10463  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-rest 12568  df-topgen 12587  df-psmet 12740  df-xmet 12741  df-met 12742  df-bl 12743  df-mopn 12744  df-top 12749  df-topon 12762  df-bases 12794  df-limced 13378
This theorem is referenced by:  limcimo  13387
  Copyright terms: Public domain W3C validator