ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eflt Unicode version

Theorem eflt 15449
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 21-May-2024.)
Assertion
Ref Expression
eflt  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( exp `  A )  <  ( exp `  B
) ) )

Proof of Theorem eflt
Dummy variables  d  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efltim 12209 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  ( exp `  A
)  <  ( exp `  B ) ) )
2 efcn 15442 . . . . 5  |-  exp  e.  ( CC -cn-> CC )
3 simplr 528 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A
)  <  ( exp `  B ) )  ->  B  e.  RR )
43recnd 8175 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A
)  <  ( exp `  B ) )  ->  B  e.  CC )
5 simpr 110 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A
)  <  ( exp `  B ) )  -> 
( exp `  A
)  <  ( exp `  B ) )
6 simpll 527 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A
)  <  ( exp `  B ) )  ->  A  e.  RR )
76reefcld 12180 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A
)  <  ( exp `  B ) )  -> 
( exp `  A
)  e.  RR )
83reefcld 12180 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A
)  <  ( exp `  B ) )  -> 
( exp `  B
)  e.  RR )
9 difrp 9888 . . . . . . 7  |-  ( ( ( exp `  A
)  e.  RR  /\  ( exp `  B )  e.  RR )  -> 
( ( exp `  A
)  <  ( exp `  B )  <->  ( ( exp `  B )  -  ( exp `  A ) )  e.  RR+ )
)
107, 8, 9syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A
)  <  ( exp `  B ) )  -> 
( ( exp `  A
)  <  ( exp `  B )  <->  ( ( exp `  B )  -  ( exp `  A ) )  e.  RR+ )
)
115, 10mpbid 147 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A
)  <  ( exp `  B ) )  -> 
( ( exp `  B
)  -  ( exp `  A ) )  e.  RR+ )
12 cncfi 15252 . . . . 5  |-  ( ( exp  e.  ( CC
-cn-> CC )  /\  B  e.  CC  /\  ( ( exp `  B )  -  ( exp `  A
) )  e.  RR+ )  ->  E. d  e.  RR+  A. x  e.  CC  (
( abs `  (
x  -  B ) )  <  d  -> 
( abs `  (
( exp `  x
)  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) )
132, 4, 11, 12mp3an2i 1376 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A
)  <  ( exp `  B ) )  ->  E. d  e.  RR+  A. x  e.  CC  ( ( abs `  ( x  -  B
) )  <  d  ->  ( abs `  (
( exp `  x
)  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) )
146adantr 276 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A )  < 
( exp `  B
) )  /\  (
d  e.  RR+  /\  A. x  e.  CC  (
( abs `  (
x  -  B ) )  <  d  -> 
( abs `  (
( exp `  x
)  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) ) )  ->  A  e.  RR )
153adantr 276 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A )  < 
( exp `  B
) )  /\  (
d  e.  RR+  /\  A. x  e.  CC  (
( abs `  (
x  -  B ) )  <  d  -> 
( abs `  (
( exp `  x
)  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) ) )  ->  B  e.  RR )
16 simplr 528 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A )  < 
( exp `  B
) )  /\  (
d  e.  RR+  /\  A. x  e.  CC  (
( abs `  (
x  -  B ) )  <  d  -> 
( abs `  (
( exp `  x
)  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) ) )  -> 
( exp `  A
)  <  ( exp `  B ) )
17 simprl 529 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A )  < 
( exp `  B
) )  /\  (
d  e.  RR+  /\  A. x  e.  CC  (
( abs `  (
x  -  B ) )  <  d  -> 
( abs `  (
( exp `  x
)  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) ) )  -> 
d  e.  RR+ )
18 fvoveq1 6024 . . . . . . . 8  |-  ( x  =  A  ->  ( abs `  ( x  -  B ) )  =  ( abs `  ( A  -  B )
) )
1918breq1d 4093 . . . . . . 7  |-  ( x  =  A  ->  (
( abs `  (
x  -  B ) )  <  d  <->  ( abs `  ( A  -  B
) )  <  d
) )
2019imbrov2fvoveq 6026 . . . . . 6  |-  ( x  =  A  ->  (
( ( abs `  (
x  -  B ) )  <  d  -> 
( abs `  (
( exp `  x
)  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) )  <->  ( ( abs `  ( A  -  B
) )  <  d  ->  ( abs `  (
( exp `  A
)  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) ) )
21 simprr 531 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A )  < 
( exp `  B
) )  /\  (
d  e.  RR+  /\  A. x  e.  CC  (
( abs `  (
x  -  B ) )  <  d  -> 
( abs `  (
( exp `  x
)  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) ) )  ->  A. x  e.  CC  ( ( abs `  (
x  -  B ) )  <  d  -> 
( abs `  (
( exp `  x
)  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) )
2214recnd 8175 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A )  < 
( exp `  B
) )  /\  (
d  e.  RR+  /\  A. x  e.  CC  (
( abs `  (
x  -  B ) )  <  d  -> 
( abs `  (
( exp `  x
)  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) ) )  ->  A  e.  CC )
2320, 21, 22rspcdva 2912 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A )  < 
( exp `  B
) )  /\  (
d  e.  RR+  /\  A. x  e.  CC  (
( abs `  (
x  -  B ) )  <  d  -> 
( abs `  (
( exp `  x
)  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) ) )  -> 
( ( abs `  ( A  -  B )
)  <  d  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B
) ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) ) )
2414, 15, 16, 17, 23efltlemlt 15448 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A )  < 
( exp `  B
) )  /\  (
d  e.  RR+  /\  A. x  e.  CC  (
( abs `  (
x  -  B ) )  <  d  -> 
( abs `  (
( exp `  x
)  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) ) )  ->  A  <  B )
2513, 24rexlimddv 2653 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( exp `  A
)  <  ( exp `  B ) )  ->  A  <  B )
2625ex 115 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( exp `  A
)  <  ( exp `  B )  ->  A  <  B ) )
271, 26impbid 129 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( exp `  A )  <  ( exp `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998    < clt 8181    - cmin 8317   RR+crp 9849   abscabs 11508   expce 12153   -cn->ccncf 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119  ax-addf 8121  ax-mulf 8122
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-map 6797  df-pm 6798  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-ico 10090  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-bc 10970  df-ihash 10998  df-shft 11326  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865  df-ef 12159  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-ntr 14770  df-cn 14862  df-cnp 14863  df-tx 14927  df-cncf 15245  df-limced 15330  df-dvap 15331
This theorem is referenced by:  efle  15450  reefiso  15451  reapef  15452  logdivlti  15555  cxplt  15590  rpcxplt2  15593
  Copyright terms: Public domain W3C validator