ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovrspc2v Unicode version

Theorem ovrspc2v 5993
Description: If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014.)
Assertion
Ref Expression
ovrspc2v  |-  ( ( ( X  e.  A  /\  Y  e.  B
)  /\  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C )  ->  ( X F Y )  e.  C )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, F, y   
y, Y    x, X, y
Allowed substitution hint:    Y( x)

Proof of Theorem ovrspc2v
StepHypRef Expression
1 oveq1 5974 . . 3  |-  ( x  =  X  ->  (
x F y )  =  ( X F y ) )
21eleq1d 2276 . 2  |-  ( x  =  X  ->  (
( x F y )  e.  C  <->  ( X F y )  e.  C ) )
3 oveq2 5975 . . 3  |-  ( y  =  Y  ->  ( X F y )  =  ( X F Y ) )
43eleq1d 2276 . 2  |-  ( y  =  Y  ->  (
( X F y )  e.  C  <->  ( X F Y )  e.  C
) )
52, 4rspc2va 2898 1  |-  ( ( ( X  e.  A  /\  Y  e.  B
)  /\  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C )  ->  ( X F Y )  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486  (class class class)co 5967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  ercpbl  13278  mgmcl  13306  sgrppropd  13360  mndpropd  13387  issubmnd  13389  submcl  13426  issubg2m  13640  lmodprop2d  14225  lsspropdg  14308
  Copyright terms: Public domain W3C validator