| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovrspc2v | Unicode version | ||
| Description: If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014.) |
| Ref | Expression |
|---|---|
| ovrspc2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5929 |
. . 3
| |
| 2 | 1 | eleq1d 2265 |
. 2
|
| 3 | oveq2 5930 |
. . 3
| |
| 4 | 3 | eleq1d 2265 |
. 2
|
| 5 | 2, 4 | rspc2va 2882 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: ercpbl 12974 mgmcl 13002 sgrppropd 13056 mndpropd 13081 issubmnd 13083 submcl 13111 issubg2m 13319 lmodprop2d 13904 lsspropdg 13987 |
| Copyright terms: Public domain | W3C validator |