ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovrspc2v Unicode version

Theorem ovrspc2v 5951
Description: If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014.)
Assertion
Ref Expression
ovrspc2v  |-  ( ( ( X  e.  A  /\  Y  e.  B
)  /\  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C )  ->  ( X F Y )  e.  C )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, F, y   
y, Y    x, X, y
Allowed substitution hint:    Y( x)

Proof of Theorem ovrspc2v
StepHypRef Expression
1 oveq1 5932 . . 3  |-  ( x  =  X  ->  (
x F y )  =  ( X F y ) )
21eleq1d 2265 . 2  |-  ( x  =  X  ->  (
( x F y )  e.  C  <->  ( X F y )  e.  C ) )
3 oveq2 5933 . . 3  |-  ( y  =  Y  ->  ( X F y )  =  ( X F Y ) )
43eleq1d 2265 . 2  |-  ( y  =  Y  ->  (
( X F y )  e.  C  <->  ( X F Y )  e.  C
) )
52, 4rspc2va 2882 1  |-  ( ( ( X  e.  A  /\  Y  e.  B
)  /\  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C )  ->  ( X F Y )  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475  (class class class)co 5925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  ercpbl  13033  mgmcl  13061  sgrppropd  13115  mndpropd  13142  issubmnd  13144  submcl  13181  issubg2m  13395  lmodprop2d  13980  lsspropdg  14063
  Copyright terms: Public domain W3C validator