ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnidpig Unicode version

Theorem addnidpig 7449
Description: There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.)
Assertion
Ref Expression
addnidpig  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  -.  ( A  +N  B )  =  A )

Proof of Theorem addnidpig
StepHypRef Expression
1 pinn 7422 . . 3  |-  ( A  e.  N.  ->  A  e.  om )
2 elni2 7427 . . . 4  |-  ( B  e.  N.  <->  ( B  e.  om  /\  (/)  e.  B
) )
3 nnaordi 6594 . . . . . . 7  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( (/)  e.  B  ->  ( A  +o  (/) )  e.  ( A  +o  B
) ) )
4 nna0 6560 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
54eleq1d 2274 . . . . . . . . 9  |-  ( A  e.  om  ->  (
( A  +o  (/) )  e.  ( A  +o  B
)  <->  A  e.  ( A  +o  B ) ) )
6 nnord 4660 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  Ord  A )
7 ordirr 4590 . . . . . . . . . . . 12  |-  ( Ord 
A  ->  -.  A  e.  A )
86, 7syl 14 . . . . . . . . . . 11  |-  ( A  e.  om  ->  -.  A  e.  A )
9 eleq2 2269 . . . . . . . . . . . 12  |-  ( ( A  +o  B )  =  A  ->  ( A  e.  ( A  +o  B )  <->  A  e.  A ) )
109notbid 669 . . . . . . . . . . 11  |-  ( ( A  +o  B )  =  A  ->  ( -.  A  e.  ( A  +o  B )  <->  -.  A  e.  A ) )
118, 10syl5ibrcom 157 . . . . . . . . . 10  |-  ( A  e.  om  ->  (
( A  +o  B
)  =  A  ->  -.  A  e.  ( A  +o  B ) ) )
1211con2d 625 . . . . . . . . 9  |-  ( A  e.  om  ->  ( A  e.  ( A  +o  B )  ->  -.  ( A  +o  B
)  =  A ) )
135, 12sylbid 150 . . . . . . . 8  |-  ( A  e.  om  ->  (
( A  +o  (/) )  e.  ( A  +o  B
)  ->  -.  ( A  +o  B )  =  A ) )
1413adantl 277 . . . . . . 7  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( ( A  +o  (/) )  e.  ( A  +o  B )  ->  -.  ( A  +o  B
)  =  A ) )
153, 14syld 45 . . . . . 6  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( (/)  e.  B  ->  -.  ( A  +o  B )  =  A ) )
1615expcom 116 . . . . 5  |-  ( A  e.  om  ->  ( B  e.  om  ->  (
(/)  e.  B  ->  -.  ( A  +o  B
)  =  A ) ) )
1716imp32 257 . . . 4  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  (/)  e.  B ) )  ->  -.  ( A  +o  B )  =  A )
182, 17sylan2b 287 . . 3  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  -.  ( A  +o  B )  =  A )
191, 18sylan 283 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  -.  ( A  +o  B )  =  A )
20 addpiord 7429 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
2120eqeq1d 2214 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  +N  B )  =  A  <-> 
( A  +o  B
)  =  A ) )
2219, 21mtbird 675 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  -.  ( A  +N  B )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   (/)c0 3460   Ord word 4409   omcom 4638  (class class class)co 5944    +o coa 6499   N.cnpi 7385    +N cpli 7386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-oadd 6506  df-ni 7417  df-pli 7418
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator