ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnidpig Unicode version

Theorem addnidpig 7348
Description: There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.)
Assertion
Ref Expression
addnidpig  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  -.  ( A  +N  B )  =  A )

Proof of Theorem addnidpig
StepHypRef Expression
1 pinn 7321 . . 3  |-  ( A  e.  N.  ->  A  e.  om )
2 elni2 7326 . . . 4  |-  ( B  e.  N.  <->  ( B  e.  om  /\  (/)  e.  B
) )
3 nnaordi 6522 . . . . . . 7  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( (/)  e.  B  ->  ( A  +o  (/) )  e.  ( A  +o  B
) ) )
4 nna0 6488 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
54eleq1d 2256 . . . . . . . . 9  |-  ( A  e.  om  ->  (
( A  +o  (/) )  e.  ( A  +o  B
)  <->  A  e.  ( A  +o  B ) ) )
6 nnord 4623 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  Ord  A )
7 ordirr 4553 . . . . . . . . . . . 12  |-  ( Ord 
A  ->  -.  A  e.  A )
86, 7syl 14 . . . . . . . . . . 11  |-  ( A  e.  om  ->  -.  A  e.  A )
9 eleq2 2251 . . . . . . . . . . . 12  |-  ( ( A  +o  B )  =  A  ->  ( A  e.  ( A  +o  B )  <->  A  e.  A ) )
109notbid 668 . . . . . . . . . . 11  |-  ( ( A  +o  B )  =  A  ->  ( -.  A  e.  ( A  +o  B )  <->  -.  A  e.  A ) )
118, 10syl5ibrcom 157 . . . . . . . . . 10  |-  ( A  e.  om  ->  (
( A  +o  B
)  =  A  ->  -.  A  e.  ( A  +o  B ) ) )
1211con2d 625 . . . . . . . . 9  |-  ( A  e.  om  ->  ( A  e.  ( A  +o  B )  ->  -.  ( A  +o  B
)  =  A ) )
135, 12sylbid 150 . . . . . . . 8  |-  ( A  e.  om  ->  (
( A  +o  (/) )  e.  ( A  +o  B
)  ->  -.  ( A  +o  B )  =  A ) )
1413adantl 277 . . . . . . 7  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( ( A  +o  (/) )  e.  ( A  +o  B )  ->  -.  ( A  +o  B
)  =  A ) )
153, 14syld 45 . . . . . 6  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( (/)  e.  B  ->  -.  ( A  +o  B )  =  A ) )
1615expcom 116 . . . . 5  |-  ( A  e.  om  ->  ( B  e.  om  ->  (
(/)  e.  B  ->  -.  ( A  +o  B
)  =  A ) ) )
1716imp32 257 . . . 4  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  (/)  e.  B ) )  ->  -.  ( A  +o  B )  =  A )
182, 17sylan2b 287 . . 3  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  -.  ( A  +o  B )  =  A )
191, 18sylan 283 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  -.  ( A  +o  B )  =  A )
20 addpiord 7328 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
2120eqeq1d 2196 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  +N  B )  =  A  <-> 
( A  +o  B
)  =  A ) )
2219, 21mtbird 674 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  -.  ( A  +N  B )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   (/)c0 3434   Ord word 4374   omcom 4601  (class class class)co 5888    +o coa 6427   N.cnpi 7284    +N cpli 7285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-oadd 6434  df-ni 7316  df-pli 7317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator