ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmetval Unicode version

Theorem bdmetval 15174
Description: Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
Hypothesis
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
Assertion
Ref Expression
bdmetval  |-  ( ( ( C : ( X  X.  X ) -->
RR*  /\  R  e.  RR* )  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  = inf ( { ( A C B ) ,  R } ,  RR* ,  <  )
)
Distinct variable groups:    x, y, A   
x, C, y    x, B, y    x, R, y   
x, X, y
Allowed substitution hints:    D( x, y)

Proof of Theorem bdmetval
StepHypRef Expression
1 simprl 529 . 2  |-  ( ( ( C : ( X  X.  X ) -->
RR*  /\  R  e.  RR* )  /\  ( A  e.  X  /\  B  e.  X ) )  ->  A  e.  X )
2 simprr 531 . 2  |-  ( ( ( C : ( X  X.  X ) -->
RR*  /\  R  e.  RR* )  /\  ( A  e.  X  /\  B  e.  X ) )  ->  B  e.  X )
3 simpll 527 . . . 4  |-  ( ( ( C : ( X  X.  X ) -->
RR*  /\  R  e.  RR* )  /\  ( A  e.  X  /\  B  e.  X ) )  ->  C : ( X  X.  X ) --> RR* )
43, 1, 2fovcdmd 6150 . . 3  |-  ( ( ( C : ( X  X.  X ) -->
RR*  /\  R  e.  RR* )  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( A C B )  e.  RR* )
5 simplr 528 . . 3  |-  ( ( ( C : ( X  X.  X ) -->
RR*  /\  R  e.  RR* )  /\  ( A  e.  X  /\  B  e.  X ) )  ->  R  e.  RR* )
6 xrmincl 11777 . . 3  |-  ( ( ( A C B )  e.  RR*  /\  R  e.  RR* )  -> inf ( { ( A C B ) ,  R } ,  RR* ,  <  )  e.  RR* )
74, 5, 6syl2anc 411 . 2  |-  ( ( ( C : ( X  X.  X ) -->
RR*  /\  R  e.  RR* )  /\  ( A  e.  X  /\  B  e.  X ) )  -> inf ( { ( A C B ) ,  R } ,  RR* ,  <  )  e.  RR* )
8 oveq12 6010 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x C y )  =  ( A C B ) )
98preq1d 3749 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  { ( x C y ) ,  R }  =  { ( A C B ) ,  R } )
109infeq1d 7179 . . 3  |-  ( ( x  =  A  /\  y  =  B )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  = inf ( { ( A C B ) ,  R } ,  RR* ,  <  ) )
11 stdbdmet.1 . . 3  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
1210, 11ovmpoga 6134 . 2  |-  ( ( A  e.  X  /\  B  e.  X  /\ inf ( { ( A C B ) ,  R } ,  RR* ,  <  )  e.  RR* )  ->  ( A D B )  = inf ( { ( A C B ) ,  R } ,  RR* ,  <  ) )
131, 2, 7, 12syl3anc 1271 1  |-  ( ( ( C : ( X  X.  X ) -->
RR*  /\  R  e.  RR* )  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  = inf ( { ( A C B ) ,  R } ,  RR* ,  <  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {cpr 3667    X. cxp 4717   -->wf 5314  (class class class)co 6001    e. cmpo 6003  infcinf 7150   RR*cxr 8180    < clt 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-rp 9850  df-xneg 9968  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510
This theorem is referenced by:  bdbl  15177
  Copyright terms: Public domain W3C validator