ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvti Unicode version

Theorem cnvti 6996
Description: If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.)
Hypothesis
Ref Expression
eqinfti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
Assertion
Ref Expression
cnvti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
Distinct variable groups:    u, A, v    ph, u, v    u, R, v

Proof of Theorem cnvti
StepHypRef Expression
1 eqinfti.ti . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
2 ancom 264 . . 3  |-  ( ( -.  u R v  /\  -.  v R u )  <->  ( -.  v R u  /\  -.  u R v ) )
31, 2bitrdi 195 . 2  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  v R u  /\  -.  u R v ) ) )
4 brcnvg 4792 . . . . 5  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( u `' R
v  <->  v R u ) )
54notbid 662 . . . 4  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( -.  u `' R v  <->  -.  v R u ) )
6 brcnvg 4792 . . . . . 6  |-  ( ( v  e.  A  /\  u  e.  A )  ->  ( v `' R u 
<->  u R v ) )
76ancoms 266 . . . . 5  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( v `' R u 
<->  u R v ) )
87notbid 662 . . . 4  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( -.  v `' R u  <->  -.  u R v ) )
95, 8anbi12d 470 . . 3  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( ( -.  u `' R v  /\  -.  v `' R u )  <->  ( -.  v R u  /\  -.  u R v ) ) )
109adantl 275 . 2  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( ( -.  u `' R v  /\  -.  v `' R u )  <->  ( -.  v R u  /\  -.  u R v ) ) )
113, 10bitr4d 190 1  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2141   class class class wbr 3989   `'ccnv 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619
This theorem is referenced by:  eqinfti  6997  infvalti  6999  infclti  7000  inflbti  7001  infglbti  7002  infmoti  7005  infsnti  7007  infisoti  7009  infrenegsupex  9553  infxrnegsupex  11226
  Copyright terms: Public domain W3C validator