ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvti Unicode version

Theorem cnvti 7085
Description: If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.)
Hypothesis
Ref Expression
eqinfti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
Assertion
Ref Expression
cnvti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
Distinct variable groups:    u, A, v    ph, u, v    u, R, v

Proof of Theorem cnvti
StepHypRef Expression
1 eqinfti.ti . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
2 ancom 266 . . 3  |-  ( ( -.  u R v  /\  -.  v R u )  <->  ( -.  v R u  /\  -.  u R v ) )
31, 2bitrdi 196 . 2  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  v R u  /\  -.  u R v ) ) )
4 brcnvg 4847 . . . . 5  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( u `' R
v  <->  v R u ) )
54notbid 668 . . . 4  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( -.  u `' R v  <->  -.  v R u ) )
6 brcnvg 4847 . . . . . 6  |-  ( ( v  e.  A  /\  u  e.  A )  ->  ( v `' R u 
<->  u R v ) )
76ancoms 268 . . . . 5  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( v `' R u 
<->  u R v ) )
87notbid 668 . . . 4  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( -.  v `' R u  <->  -.  u R v ) )
95, 8anbi12d 473 . . 3  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( ( -.  u `' R v  /\  -.  v `' R u )  <->  ( -.  v R u  /\  -.  u R v ) ) )
109adantl 277 . 2  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( ( -.  u `' R v  /\  -.  v `' R u )  <->  ( -.  v R u  /\  -.  u R v ) ) )
113, 10bitr4d 191 1  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   class class class wbr 4033   `'ccnv 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-cnv 4671
This theorem is referenced by:  eqinfti  7086  infvalti  7088  infclti  7089  inflbti  7090  infglbti  7091  infmoti  7094  infsnti  7096  infisoti  7098  infrenegsupex  9668  infxrnegsupex  11428
  Copyright terms: Public domain W3C validator