Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvti | Unicode version |
Description: If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.) |
Ref | Expression |
---|---|
eqinfti.ti |
Ref | Expression |
---|---|
cnvti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqinfti.ti | . . 3 | |
2 | ancom 264 | . . 3 | |
3 | 1, 2 | bitrdi 195 | . 2 |
4 | brcnvg 4764 | . . . . 5 | |
5 | 4 | notbid 657 | . . . 4 |
6 | brcnvg 4764 | . . . . . 6 | |
7 | 6 | ancoms 266 | . . . . 5 |
8 | 7 | notbid 657 | . . . 4 |
9 | 5, 8 | anbi12d 465 | . . 3 |
10 | 9 | adantl 275 | . 2 |
11 | 3, 10 | bitr4d 190 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2128 class class class wbr 3965 ccnv 4582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-cnv 4591 |
This theorem is referenced by: eqinfti 6956 infvalti 6958 infclti 6959 inflbti 6960 infglbti 6961 infmoti 6964 infsnti 6966 infisoti 6968 infrenegsupex 9488 infxrnegsupex 11142 |
Copyright terms: Public domain | W3C validator |